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ABSTRACT

Digicomp Research conducted a review of Nebula (AIL-STD-1862A) for Rome

Air Development Center. This is the final report of that effort.

AIL-STD-1862A is proposed as a major Instruction Set Architecture for

embedded military computer systems in the late 1980's and the 1990's.

Nebula was reviewed from a number of viewpoints by independent review-

ers. Part 1 of this report is a summary of the work performed and the

conclusions that were reached. Included in Part 1 are an executive sum-

mary, introduction, background, and a detailed summary of the conclu- I. %

sions reached by the independent reviewers. Part 2 is a collection of

the reports written by the reviewers.
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Section1

EXECUTIVE SUMMARY

AREAS STUDIED

Based or, a priority list provided by RADC, reviews of Nebula were per-

formed in the following areas and are included in this report:

*Adal Support

'PortabilityL

1 /O

*JOVIAL Support

'Fault-Tolerance

*Virtualizability

Support for Very High Level Languages, e.g. LISP, SAIL

*Dita base systems support

*Multiprocessing

A section is also included which contains Nebula problem areas which

arose in various discussions but which did not seem to fit into one of

the above areas.

1 Ada is a trademark of the U. S. Dept. of Defense (Ada Joint Program
Office).



GENERAL CONCLUSIONS AND RECOMMENDATIONS

MIIL-STD-1862A, although being a sound 32-bit ISA in many respects, has

not reached a sufficient level of maturity to easily overcome deficien-

cies which could prove to have a greater impact in some Air Force appli-

cations than are desirable. This conclusion is supported primarily by

concerns in the following areas:

1. Through lack of clarity, through insufficient specifica-

tion, and through explicit implementation dependencies,

there are many problem areas relative to software port-

ability. Although some portability issues arise due to

differences between Air Force and Army procurement poli-

cies, some problems would still exist even if the Army's

policies were adopted by the Air Force.

2. Given Ada's position in the DoD standardization programs,

Nebula architectural support of the Ada programming lan-

guage is inadequate in some respects. Features of Nebula

that were designed specifically for Ada or High-Order-

Languages often do not support Ada well. Compilers which0

attempt to use these Ada or HOL features are likely to be

more complex than compilers targeted for traditional com-

puter architectures or compilers targeted for Nebula com-

puters which do not use the HOL features.

3. A number of the problem areas uncovered in the reviews

1-1,2

, . ., . . ... ... .. . .. . .-......- ,... ,-.. ... ... ... ,. ..- • . . .'- - .- . -. .. .,. .



were a result of the development process for Nebula. it

was felt that, due to the lack of development time,

insufficient consideration was given to the requirements

of operatin~g systems and compilers. Rework may be

required as experience is gained from writing real soft-

ware for a Nebula machine.

To get from the present Nebula standard to one which is more closely

tailored to Air Force requirements, starting over from the beginning may

niot be necessary. However, it is not sufficient to deal with the prob-

lems in isolation and apply patches as difficulties arise. Sections of

Nebula should be redesigned for the attainment of specific, well defined

goals. In most cases, the existing approach should be used as a base.

SPECIFIC CONCLUSIONS AND RECOMMENDATIONS

In each of the areas studied there is a list of suggested changes.

These suggestions vary in emphasis from "highly desirable" to "1sug-

gested" and must be reviewed based upon the importance of the particular

area in the view of the Air Force. For a summary of the recommenda-

tions, see Section 4, "Results of Independent Reviews of Nebula."L

The following list consists of the suggestions (some are merely com-

ments) which have extensive impact on the architecture:

1. The Nebula Control Board should adopt the policy of

1-1-3
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"controlled unportability" presented in the portability

report. Software visible implementation dependencies

should not proliferate; where appropriate, they should be

explicitly allowed. In that complete portability is

impossible (or the cost/benefit ratio is too high), devi-

ations from providing complete portability in the stan-

dard should be known and expressly allowed. An attitude

of "controlled unportability" would provide documented

justifications of deviations from complete portability _

and would allow flexibility when needed.

2. As a document, MIL-STD-1862A is not sufficiently clear,

precise, or complete to be used as the definition of a

ISA Standard. Regardless of the changes that finally get

adopted in Nebula, the standard must be rewritten for

completeness and to avoid implementation dependencies

which will most certainly arise because of lack of clar-

ity and precision.

3. Since the DoD standardization plan calls for most pro-

grams run on Nebula to be written in Ada, the Air Force

would benefit if Nebula were better matched to Ada. In

particular:

M More support for Ada tasking is needed. A suggestion

is included in the report.

"2,2 - .:
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*The procedure interface should provide more suitable

support for Ada procedures, particularly, support

I,-

should be 'included for uplevel addressing of parame-

ters.
A.re support for run-ti be very use-

ful. Two minor suggestions were made, but little work

was done in this area.

4. Problems with the procedure interface were discussed in

several reports. More access, either structured, 2 or

unstructured,3 should be allowed to the context stack.

5. The architecture is not virtualizable. While the ability

to run a virtual machine monitor was viewed as highly %

desirable by the Computer Family Architecture evalua-

tior.,4 it evidently was not a goal of the Nebula design-

ers. This is rectifiable and changes are suggested to

make it virtualizable. Although there is already a use

for this feature,5 the Nebula Control Board should decide

2 By structured access we mean the addition of new instructions to give
controlled access to specific information in the context stack along
the lines of LPSW which. loads the value of the calling procedure's PSW
into a specified location.

3 By unstructured access we mean software visibility of the context
stack to the normal instructions for loading, storing, and performing
arithmetic and logical operations.

4 Burr, W. E.. Fuller, S. H., Stone, H., Computer Family Architecture
Selection Committee - Final Report, Volume II - Selection of Candidate
Architectures and Initial Screening chan7s eptember, 1977.

5 Statement of Work - Military Computer Family Operating System (MCFS),

. .. .. . . . . . .
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if this functionality is indeed required and modify

Nebula if that use is justified.

6. Because of its memory management system, Nebula is not

particularly suited to be used as a general purpose

development system.

7. i"

Nebula will not support demand paging.6

AREAS FOR FURTHER WORK

There are several areas of Nebula which were not studied and which need

to be investigated, namely:

1. The memory management system has been one of the most

controversial parts of Nebula because of: its segmenta-

tion approach, its failure to guarantee to the programmer

more than 16 segments in a map, and the absence of sup-

port for demand paging.

2. The IOC processor may need more processing capabilities

for applications such as data base management.

3. Ways to improve Nebula support for run-time checking of L

constraint errors in Ada programs needs to be investi- .:>.:.

gated.

4. Some features of Nebula, in particular the memory

sion, U. S. Army Communications - Electronics Command, Fort Monmouth,

NJ.

6 This feature is also requested in the MCFOS Statement of Work.

1-1.6
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management system, registers, and parameters should be

evaluated with respect to the impact that the possible

implementation techniques have on the architecture.

4...

4

4

4
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Section 2

INTRODUCTION

The Nebula architecture has both strengths and weaknesses. If this

report seems niggardly irn its praise of strong points, it is partly

because they are good and do not need changing. The designers were

faced with the difficult problem of using proven technology while at the

same time producing an architecture which is competitive over the next

10-15 years. Nebula contains laudable features, both in creative use of

existing methods and in innovative approaches to problems. However, the

general emphasis of this report is on the shortcomings of Nebula, as

explained below.

A LOOK TO THE FUTURE

Nebula is proposed as a major architecture for embedded systems in the

late 1980's and 1990's. If adopted and accepted as a DoD-wide standard

with the same committment as Ada, Nebula may rapidly become frozen and

its current weaknesses could be felt through several generations of

*hardware and software. Therefore, Nebula must be viewed with an espe-

cially critical, though constructive attitude.

The analogy between Nebula and Ada is instructive. They are respec-. -

tively the ISA and computer language for use in embedded computer sys-

tems. However, there was a competitive design process for Ada. and

Nebula did not go through that process. The lengthy design and review

1-2.1
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schedules afforded Ada were not given to Nebula. Although there were

pressing historical reasons for this shortened design and review pro-

cess, the effect is nonetheless observable in various weaknesses of the

Nebula design.

There is now a competitive effort to build an advanced development

prototype based on Nebula. However, this effort is to implement the

ISA, not to evolve the ISA itself. Advancing technology and the effects

of the competitive process will not be able to improve the ISA once it

is frozen. This lack of improvement is especially critical in areas

where the weaknesses affect software support (since architectural imple-

mentors will presumably not address such features).

Nebula is a strong and innovative architecture by today's standards.

Yet, Nebula developers should not ignore the salient features of archi-

tectures evolving from today's commercial bases which are very likely to

be dominant when Nebula-conforming computers are being built in full-

scale production under the Army's MCF program. For example, by 1986 a

. 32-bit upgrade of the Motorola MC68000, with expanded memory architec-

ture, is likely to be well established in the marketplace. Intel's iAPX

432, which already exists, is strongly oriented toward Ada. The iAPX

432 also provides significant support for multiprocessing, fault toler-

• ance, security and protection, garbage collection and scoping of vari-

ables.7 By 1986 a revision based on experience with the iAPX 432 could

be a superior alternative to Nebula, especially given Intel's evolution-

7 Ziegler, S., et al, "Ada for the Intel 432 Microcomputer," Computer,
Vol. 14, No. 6, June, 1981, pp. 47-56.

1
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ary approach to the market and its significant headstart. Also,

militarized implementations of a range of VAX processors may exist.

The major issue is what can, and should be done to develop Nebula in

light of the future state of computing technology (while at the same

time retainirng the low-risk design characteristics of the ISA). The

increased interdependence between hardware and software (especially with

operating systems and compilers) is one of the most important areas cur-

rently under active research and development in industry. In the case

4of Nebula, this interdependence shows up in the procedure and task

interfaces, including especially the context stack, parameter-passing

mechanism, and exception handing. These areas represent the least con-

servative of Nebula's features. They were the focus of considerable

debate (and frequent revision) during the Nebula design effort, and are

often cited within the Nebula Reviews as problem areas requiring further

analysis.

NEBULA REVIEWS

Several versions of Nebula were used during the process of the review

described below. References to "Nebula" in Part 1 refer to the draft

version of MIL-STD-1862A dated "1TBD" issued approximately September 30,

1981. In Part 2, the beginning of each report states which version is

referenced - most reports used the July 1, 1981 version of

MIL-STD-1862A.
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II

The reviewers were asked to answer the following questions about

Nebula with respect to their area:

What are the problems with the ISA in the area?

What must be done to work around these problems?

What can't be done because of the problems?

How car. the architecture be changed to solve the problem?

What features of the ISA provide good support in the area?

6T

ORGANIZATION OF THIS REPORT

This report is organized as follows:

1. rhe first part of this report contains summaries of the

work performed and the conclusions and recommendations

resulting from that work. The sections found in this

• 'part are:

a. An Executive Summary which briefly describes the

work performed and the conclusions reached.6
b. An Introduction to the rest of the Report.

c. A Background section which includes chapters on: the

history of the efforts surrounding Nebula; a summary

of the goals of various organizations for which

Nebula is expected to be a significant advance; a

short technical overview of the Nebula architecture.

1-2.4
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d. A section containing the results of the independent

reviews of Nebula. This section includes chapters

or.: Nebula's strong features, support for programs

written in Ada, writing portable programs for

Nebula, problem areas and suggested changes, and

areas requiring further study.

2. The second part of the report is a collection of the

final reports submitted by the independent reviewers.

1-2-5
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Section 3

BACKGROUND

HISTORY AND PERSPECTIVE OF NEBULA

Introduction

This background information on Nebula (MIL-STD-1862A) is presented to

provide a perspective of the environment, and the evolution of the

Nebula architecture. Topics covered include: DoD and related standard-

ization efforts; early efforts to obtain a standard architecture; and

the planned implementations of the architecture.

Standardization efforts

The DoD, the Army, and the Air Force are faced with: escalating costs

for hardware and software; problems with life cycle support and mainte-

nance; lengthy acquisition time; and overuse of old technology. To meet

these problems, the military services are developing standardization

plans which rely heavily on: the use of High Order Languages (HOLs) with

the Ada language being used for most systems, the use of a few Instruc-

tion Set Architectures (ISAs) for most systems, and a control policy for

acquisition and implementation of the architectures. Nebula is to be

the major ISA for the Army and the 32-bit ISA for the Air Force. The

Air Force already has a 16-bit ISA (MIL-STD-1750A) which it has been

using primarily for Avionics.

1-3-1
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Military Computer Family (MCF) Program

The development of Nebula grew out of a joint .Army/Navy effort to obtain

a software compatible family of military computers based on a common

architecture, known as the Computer Family Architecture or CFA.8 9 10 11

12 13 The Naval Research Laboratory and CENTACS of the Army Electronics

Command Cat different times known as ECOM, CORADCO4, and CECOM) analysed

basic approaches and needs. The preferred approach was to obtain a com-

mercial architecture, if possible. Several architectures were studied,

* and the three finalists were: DEC PDP-11, IBM System 370, and Interdata

8/32. The DEC PDP-11 architecture was finally chosen after a lengthy

evaluation process.

8 Burr, W. E., Coleman, A. H., Smith, W. R., "Overview of the Military
Computer Family Architecture Selection," 1977 National Computer Con-
ference Proceedings, Volume 46, AFIPS Press, tMontvale. NJ, pp.
131-137.

9 Fuller, S. H., Stone, H. S., Burr, W. E., "Initial Selection and
Screening of the CFA Candidate Computer Architectures," 1977 National
Computer Conference Proceedings, Volume 46. AFIPS Press, Montvale, NJ,
pp. 139-14T

10 Fuller, S. H., Shaman, P., Lamb, D., "Evaluation of Computer Archi-
tectures Via Test Programs," 1977 National Computer Conference Pro-

ceedings, Volume 46, AFIPS Press, Montvale. NJ, pp. 147-16

11 Barbacci, M., Siewiorek, D., Gordon, R., Howbrigg, R., Zuckerman. S.,
"An Architectural Research Facility - ISP Descriptions, Simulation,

4 Data Collection," 1977 National Computer Conference Proceedings, Vol-
ume 46, AFIPS Press, Montvale, NJ, pp. 161-173.

12 Wagner, J.. Leiblein, E., Rodriguez, J., Stone, H., "Evaluation of
the Software Bases of the Candidate Architectures for the Military
Computer Family," 1977 National Computer Conference Proceedings, Vol-
ume 46, AFIPS Press, Montvale, NJ, pp. 175-183.

4
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One of the criteria for the architecture was that it should be gov-

ernment owned. In the course of negotiation with Digital Equipment Cor-

poration for the rights to the PDP-11 architecture, DEC announced a new

32-bit architecture called the VAX. The government tried, unsuccess-

fully, to secure the rights to this new architecture. Due to congres-

sional pressure, the Navy was forced to launch development of its own

program, Navy Embedded Computer System (NECS)14 and this Navy program is

reportedly very similar in philosophy and approach to the MCF program.15

With the failure to obtain ownership of a commerical architecture,

the MCF program had the responsibility for developing a new architec-

ture. In 1979, Carnegie-Mellon University (CMU) began development of a

new ISA which had as its major result the appearance of Nebula

(MIL-STD-1862) in May, 1980.

The MCF Program now has four contracts (with IBM, GE/rRW, Raytheon,

and RCA) to build Advanced Development models16 to be completed in

1983.17 After evaluation, two contractors will be chosen to produce Full

13 Cornyn, J. J., Smith, W. R., Coleman, A. H., Svirsky, W. R., "Life
Cycle Cost Models for Comparing Computer Family Architectures," 1977
National Computer Conference Proceedings, Volume 46, AFIPS Press,
Montvale, NJ, pp. 185-199. ' " -

14 Martin, Edith W., "The Military Computer Family, Part I: A Documen-
tary," Military Electronics/Countermeasures, March, 1979, pg. 75.

15 Martin, Edith W., "The Military Computer Family, Part III: The
Issues," Military Electronics/Countermeasures, May, 1979, pg. 74.

4I
16 Statement of Work - Advanced Development of the Military Computer

Family, DAAK80-80-Q-1594, U. S. Army Communications - Research and
Development Command, Fort Monmouth, NJ, August, 1980.

17 At present, the family comprises three members: a 3 MIPS, 2 Mbyte
super-mini version (AN/UYK-41 described by CR-CS-0034-001); a 500

'-3.3
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Scale Development Models. In 1985, a design will be selected. A final

contractor will be chosen after a competitive bidding process, ard a

5-year production contract will be let. At this same time, the ISA will

be reviewed and contracts for new Advanced Development models will be

let which will allow for different implementations based on new technol-

ogy.

Air Foroe Involvement with Nebula

In the last half of 1980, the Air Force joined the Army in joint control

of the Nebula standard. A joint control structure was established which

consisted of a Nebula Executive Board (NEB), a Nebula Control Board

(NCB), and a Technical Review Committee for the NCB known as the "Tiger

Team." The Air Force plans to actively pursue a standardization program

using its MIL-STD-1750A ISA and JOVIAL J73 programming language while

evaluating proposed applications for use with Nebula and Ada when they

become available. The shift across the architectures and languages is

expected to be gradual and mainly be limited to new systems or applica-

tions, or to major upgrades/modifications of existing systems.

-~~~~~% -° ------ -----

KIPS, 1 Mbyte microcomputer version and a 500 KIPS, 128K single board
version (AN/UYK-49 described by CR-CS-0035-001);
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GOALS OF THE NEBULA ISA

Introduction

This section presents the role of the Nebula Instruction Set Architec-

ture (MIL-STD-1862A) in fulfilling the goals of the Air Force System

Command - High Level Systems Standardization (AFSC-HLSS) Program. A

good starting point for a history of attempts to adopt a standard

instruction set architecture is the Army's early efforts with the Mili-

tary Computer Family (MCF) Program.

0 The MCF Program

Problems experienced by DoD with rapid and uncontrolled proliferation of

* computing systems caused the initiation of the MCF Program. Good dis-

cussions of the problems and other motivations for the MCF Program are

contained in references.18 19 20 21 22 Briefly, the problems that cur-

rently exist are:

* Lack of portable applications software

----- ----- - - - -- -

18 Martin, Edith W., "The Military Computer Family, Part I: A Documen-
, tary," Military Electronics/Countermeasures, March, 1979.

19 Martin, Edith W., "The Military Computer Family, Part II: The
Approach," Military Electronics/Countermeasures, April, 1979.

20 Martin, Edith W., "The Military Computer Family, Part III: The
Issues," Military Electronics/Countermeasures, May, 1979.

21 Shohat, Murray and Edith W. Martin, "MCF Part IV: The Opportunities,"
Military Electronics/Countermeasures, June, 1979.

V.

22 Brooks, et al, "MCF VI: Box vs. Module Standardization," Military
Electronics/Countermeasures, August, 1979.
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Continual retraining of programmers on new machines, languages,

and programming environments

* Lack of good program development environments

Difficulty in training and retaining technicians

• Little programming in HOL's

• Old technology hardware with attendant repair problems

• Little or no competition throughout life cycle of system

• Great difficulty in upgrading systems

rhe goal of the ;4CF Program is standardization of a computer family

architecture and modularization to achieve:

* Software transportability

Meaningful competition between suppliers

• Multiple suppliers

* Graceful technology insertion

reduced life cycle costs

Discussions with industry have resulted in reasonable agreement in

attempts to achieve these goals by standardization across four levels:

0 Hardware Communication Protocols

0 Higher Order Languages (e. g. Ada)

* Common hardware functionality at the box level

* Standard instruction set architectures

1-3.6
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The above list is ranked in order, from highest to lowest acceptability.

There were a number of types of standardization on which no general

agreement could be reached (e.g. standardization at the module level

rather than the box level). 23

Instruction Set Architecture Goals

The ISA standardization effort has in itself generated a number of

goals. These goals are that MIL-STD-1862A should be:

*Implementable on a family of machirnes with a wide range of

processing power

*An efficient host for implementing MCF HOL's (e. g. Ada)

*An efficient base for implementing :4CF communications hard-

ware protocols (e. g. 1553B, RS-232)

*A good target for implementation of a wide range of applica-

tions (e. g. real-time systems, data base systems, CCCI

applications).

*Reduce the visibility of the hardware to the software.24

23 Martin, Edith W.. "The Military Computer Family, Part III: The
Issues," Military Electronics/Countermeasures, May, 1979.

24 Szewerenko, L., Dietz, W., Ward, F., "Nebula, A New Architecture and
its Relationship to Computer Hardware," Computer, Vol. 14, No. 2,
February, 1981.
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AFSC - HLSS Program Goals

The Air Force System Command (AFSC) has a High Level System Standardiza-

tion (HLSS) Program to expand the standardization of computer resources

across Command programs. The goal of this program is to implement the

efficient execution of Ada and very high level programming languages in

a standard way by 1990. The expected benefits of this program are:

* Reduced life cycle software costs.

Reduced logistics and training support.

Both application and support computer programs may be used

on multiple projects.

* Use of standard ISA's to facilitate hardware competition.

* Increased portability of computer programs.

The last goal, that of program portability, plays a central role in many

of the other goals. In particular, life cycle costs and use of computer

programs on multiple projects are tied very closely to program portabil-

ity. To a certain extent, logistics and training support are also

affected by portability. Part 2 of this report contains a paper which

discusses portability issues surrounding the Nebula standard.

1-3.8
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OVERVIEW OF NEBULA (MIL-STD-1862A)

Purpose

The following paragraphs present the major points of the Nebula Instruc-

tion Set Architecture (ISA). They are intended for the newcomer to

Nebula and assume no prior knowledge of the ISA. The goal is not to

define the ISA in detail but to give an overall picture of the architec-

ture and to provide a background for understanding the reports in Part

2.

Basic Concepts

The Nebula ISA is a 32-bit general register architecture with byte

addressable memory. Instructions are sequences of bytes with the first

byte specifying the operation and the succeeding bytes specifying the

operands. An operand specifier is a sequence of one or more bytes spec-

ifying the location and size of an operand. The operand specifiers pro-

vide a variety of addressing modes available in multiple forms of vary-

ing compactness. Data types such as logical, real and integer are

available in several sizes: integers and logicals may be 8, 16, or 32

bits; reals may be 16, 32 or 64 bits. Operands of a given instruction

may be of mixed sizes. Size conversions are performed automatically.

The architecture provides a procedure-based control structure. Pro-

cedures may be invoked by calls, interrupts, traps, supervisor handled

exceptions, vectored supervisor service calls, or as independent tasks.

The procedure mechanism provides for parameter passing and maintenance

of control linkages. Each procedure has a procedure context containing

1-3.9
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its own register set of up to 16 registers (one of which is subsumed by

the program counter), its parameters, its PSW, and the state of its

exception handler. Stack frames for procedure contexts are allocated on

stacks called context stacks which are protected from any access other

than through the procedure interface. Nebula instructions use virtual

addresses that are translated using a hardware supported memory mappir.g

scheme. The segmented virtual memory provides at least 10 ,zriable size

segments mapped through an associative memory segment table which con-

tair.s access rights and relocation amount. One half of the virtual

address space is accessible only to the supervisor.

Addressing Operands

Nebula accesses operands by operand specifiers. Each is evaluated to

give the location and size of an operand. Nebula provides about 8

addressing modes depending on how one groups the operand specifiers.

These modes are as follows:

* Literal Mode specifies an instruction stream constant. -

* Register Mode designates a register in the current procedure

context.

* Indirect Register Mode designates a register (other than

register 0) which contains the address of the operand.

* Register Indexed Mode designates a register and a signed

displacement. The signed displacement is added to the con-

tents of the register to form the address of the operand.

1-3.10
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* Absolute Mode provides the 32-bit absolute address of the

operand.

* Parameter Addressing " ¢des allow access to parameters

defined by the caller of the procedure. Access is by giving

the number of the desired parameter in the parameter list.

Short Parameter Mode encodes the parameter number (in the

range 1 - 7) in the operand specifier. Extended Short

Parameter Mode allows access to all 255 possible parameters

by using an additional byte to i.dicate the parameter number

when the Short Parameter Mode indicates access to parameter

0. Long Parameter Mode sets the number from another operand

specifier embedded in its specifier. Because an operand

specifier may be embedded in another, this mode is called a

"compound" mode (only noncompound specifiers may be embed-

ded in a compound mode's specifier). For example in Long

Parameter Mode, the parameter number may be described as the

contents of a register by a Register lode operand specifier;

this mode is necessary if the parameter number is not known

at compile-time.

Unsealed Index Mode is another compound addressing mode.

The operand specifier includes two operand specifiers for

the index and the base. The base and index specifiers are

evaluated and combined to determine the address of the oper-

and.

1-3.11
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*Scaled Index Mode is similar to Unscaled Index Mode. It is

also compound an~d includes index and base specifiers. How-

ever, the index is scaled before adding it to the base. The

scaling is performed by multiplying the index by the size of

the operand (1, 2, 4., or 8 bytes) as indicated in the oper-

and specifier for the base.

A Procedure's Local Context

Unlike conventional architectures, Nebula has no common set of general

6 purpose registers accessible to all procedures; each procedure has its

owr. set of general purpose registers. When a procedure is invoked, a

frame (procedure context) for that procedure is allocated in memory on a

context stack. This frame contains the general purpose registers for

that procedure, the PSW of the procedure, its program counter, informa-

.7 |

tion about any parameters it was passed and optionally the address of an

exception handler. A procedure may have up to 16 local registers. Reg-

ister 0 is the program counter for the procedure.

The integrity of the context stack is maintained by not allowing

access to its contents except through the procedure interface. This

interface includes the procedure-call mechanism, parameter and register

addressing modes, exception handling instructions, and program counter

manipulation. Access to other procedure contexts is restricted to read-

ing the PSW of the caller, and access to any register passed as a param-

eter.
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In addition to the information on a procedure's context stack, vari-

ous fixed characteristics of the procedure are described by a procedure

descriptor located at the procedure's entry point. This descriptor

tells whether the procedure has a variable or fixed number of parame-

ters, the number of parameters (if the number is fixed), and the number

of local registers the procedure is to have. The Processor Status Word

(PSW) also contains information about the current procedure. It

includes the number of registers accessible to the procedure, the number

of parameters the procedure was passed, and other state information.

The context for each procedure includes the PSW which defines its capa-

bilities.

The architecture supports two active context stacks corresponding to

the Kernel Context Pointer and the Task Context Pointer. The hardware

remembers which context stack is active; the current stack is changed by

traps, interrupts, and tasking instructions. Each task in the system

has associated with it a unique context which is in turn associated with

the Task Context Pointer. An instruction is provided to change the

active task context stack (LTASK).

Procedure Invocation

Procedures are invoked by executing calls. A call specifies an entry

address and a parameter list. The parameter list consists of a sequence

of operand specifiers. The procedure invocation establishes a corre-

spondence between the operand specifiers in the parameter list of the .

caller and the parameter addressing modes of the called procedure.

1-3.13
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Within the called procedure, a parameter is accessed by an operand spec-

ifier using a parameter addressing mode.

The operand specifiers of the caller are evaluated to yield a loca-

tion and size. The corresponding parameter addressing modes are bound

to this location and size information. Thus all parameters are call-by-

reference.

The manner of specifying the entry address depends upon the type of

call. Normal calls specify the entry address as an operand. Supervisor

calls and unimplemented instructions obtain the address by indexing into

protected tables of addresses. Interrupts and traps are assigned fixed

vectors.

An OPEX trap is defined for instructions that are not implemented in

hardware or microcode; the trap may pass control to a software procedure

which then simulates the instruction. The difference between a micro-

code implemented instruction and an unimplemented instruction code that

invokes a software procedure performing the same operation is not detec-

table in the object code of the machine.

Memory Management

,- Nebula instructions use virtual addresses. These are translated to

physical addresses by the memory management system. The memory manage-

ment system divides the virtual address space of the supervisor and each

* task into a number of segments of variable size. Each segment begins at

a variable address in virtual address space described by a table in

physical memory. Segments may be protected against various types of

1-3.14-.
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access (see the next section on protection codes) and may be declared

accessible only by processes which are executing in privileged mode.

The supervisor can directly access the segments of the current task sub-

ject to these restrictions.

The virtual address space is divided into two halves. One of these

halves is accessible only when the processor is in supervisor mode.

There are two memory maps available for address translation, a supervi-

sor map and a user map. An address in the supervisor half of the vir-

tual address space uses the supervisor map for address translation.

Addresses in the user half use the user map.

rhese maps are pointed to by the Supervisor Map Pointer Register and

the User Map Pointer Register respectively. Each register contains, in

addition to the map pointer, a bit indicating whether or not relocation

is to be performed.

map-pointer-register < address-of-map, relocate >

Each memory map is a sequence of segment descriptors. Each segment

descriptor contains a virtual address bound and a signed relocation

amount. The sequence is ordered so that the virtual address bound in

each descriptor is strictly greater than that of the preceding segment

descriptor.

* memory-map < segment-descri,... ,segment-descrk >

segment-descr < virtual-addr-bound, reloc-amt >

An interpretive semantics for address translation is as follows.
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1. Given an address, determine in what half of virtual mem-

ory it lies and select the appropriate map pointer regis-

ter.

2. If the register indicates that no relocation is to be

performed, the physical address is the same as the vir-

tual address.

3. If relocation is to be performed refer to the map indi-

cated by the map pointer register.

4. Select the appropriate segment descriptor in the map by

comparing the virtual address (upper) bound of the seg-

ment descriptor with the given virtual address.

5. The physical address is then the sum of the virtual

address and the relocation amount.

Protection

The description thus far has ignored protection features and checking of

access rights. To understand the protection mechanism, it is necessary

to elaborate on the structure of the architecture.

The processor is always in exactly one of supervisor or task mode;

also, it is always in exactly one of privileged or unprivileged mode.

The PSW determines what combination of these modes is in effect.

The map pointer registers contain a protection flag (in addition to

the map address and relocate flag already described). The protection

flag indicates whether or not access checking is to be performed. Seg-

1-3.16
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ment descriptors contain a privilege flag and a protection key (in addi-

tior to the virtual address bound and relocation amount).

map-pointer-register < address-of-map,

relocate,

protect >

segment-deser < virtual-addr-bound,

relocation-amount,

privilege-flag,

protection-key >

Taking protection into account, address translation proceeds as follows.

1. Given an address, determine in what half of virtual mem-

ory it lies and select the appropriate map pointer regis-

ter.

2. If it is in the supervisor half and the processor is in

user mode a trap (Invalid.supv) occurs.

3. If the register indicates that no relocation is to be

performed, the physical address is the same as the vir-

tual address.

4. If either the relocation or protection bit of the map

pointer register is set, select the appropriate segment

descriptor in the map by comparing the virtual address

(upper) bound of the segment descriptor with the given

virtual address.
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5. If protection is enabled, perform checking for privilege

violations and access violations. A privilege violation

takes place if the segment descriptor is marked privi-

leged and the processor is not in privileged mode. An

access violation takes place if the protection key of the

segment descriptor does not allow the type of access

being performed.

6. If no protection violations occurred, relocation is per-

formed by summing the virtual address and the signed

relocation amount.

The following access restrictions are available as protection keys:

* No Access - any access shall cause a trap.

Instruction Access Only -- instruction fetch and reading of

literals is allowed.

" Data Read Only- reading of operands is allowed.

Instruction or Read Access - instruction fetch, literal

fetch, and reading of operands is allowed.

* Data Read/Write reading and writing of operands is

allowed.

* Context Only - access as part of a context stack is

allowed. Any other access shall cause a trap.
Reserved1 - any access shall cause a trap.

* Reserved2 - any access shall cause a trap.

1-3.18
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Context stacks can only be allocated in segments with a protection code

of Con~text Only. Context segments cannot be manipulated directly by any

instruction. Proper manipulation of this information is enforced by

only allowing access through the procedure interface.

Input and Output

The primary 1/O interface is through a special processor called an

Input/Output Controller (IOC). The IOC is a 16 bit processor with a

standard instruction set tailored to the requirements of three communi-

6 catiorns irnterfaces: the Air Force 1553B I/O bus standard, Serial Point-

to-Poir.'t (SPP), an~d Parallel Poirnt-to-Point (PPP). Interaction with 1/0

devices through an IOC is accomplished by accessing control registers as

locations in the I/0 portion of physical address space (the first 2**20J

locations in memory). The hOC's access memory through the virtual

o,

addressing mechanism. Each IOC program (also referred to as a channel

program) has associated with it three virtual segments, one each for

instructions, data, and messages. The memory management system performs

some checking to see that these segments are used as intended, and that

1/O program specified addresses lie within the specified segments. For

6 a more detailed discussion of the I/O architecture in Nebula, refer to

the paper in Part 2 covering that topic.

1-3-19

. . . . ..

. . ...-. o

. .-.....-.. -



Section 4

RESULTS OF INDEPENDENT REVIEWS OF NEBULA

INTRODUCTION

This section summarizes the conclusions an~d recommendations of the

reviews presented in Part 2. The comments in the reviews range from:

*Strongly suggested changes,

*Possible changes depending on the importance that the Air

Force puts on the application area,

*Problems that are raised but for which no solution is sug-

gested,

M 'ismatches between the application and Nebula that can

either be programmed around or can result in modification of

the architecture,

0 Comments on requirements or useful features of the operating

system or other system programs for Nebula to support the

various application areas,

*General comments on the architecture.

I_

This section does not present all of the results of the reviews. For

complete lists of results and for the details and rationale of the con-

clusions presented in this section, the reader should read the actual

papers in Part 2 of this report.

1-4. 1
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Notational conventions used to refer to the papers in Part 2 as shown

below. Often a page number is included in the notation (e.g.

[PORTABILITY p. 15]).

(ADA] - Implementing Ada on the Nebula Architecture:

Design Issues and Alternatives

(PORTABILITY] -- Nebula and Portability

[I/0]-- Analysis of Nebula Architectural Support ,.

for I/0

[JOVIAL] -- JOVIAL/Nebula Suitability Report
)

[FAULT-TOLERANCE] -- Building Fault-Tolerant Systems with

Nebula " : '. -

[MULTIPROCESSING] -- The Nebula Architecture and Multi-Processor

Systems

[VIRTUALIZABILITY) -- Nebula Architectural Support for Virtual

Machines

[VHLL - Suitability of Nebula for Very High

Level Languages

[DATABASE] - Evaluation of the Nebula Processor for

the Implementation of Database Management

Systems

I-4.2
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[MISC] -- General Observations on Nebula

GENERAL COMMENTS

General Architecture Evaluation

The general type of architecture chosen was not addressed by this

review. Research is being done in many directions on architectures:

High Level Language Architectures,25 Intermediate language architec-

tures, e. S., the Western Digital Pascal Microengine,26 capabilities

architectures, e. g., the Intel iAPX 432,27 reduced instruction set

architectures,28 and distributed architectures. While these approaches

do not in general meet the Nebula requirements of a low risk design,

architectures of these types may be in widespread use within the same

time frame that Nebula computers are planned to enter the full-scale

production phase. This should be an incentive to produce as excellent a

design as possible. The Nebula designers chose a much more conventional

25 Dilenno, T., and Chu, Y., Evaluation of Nebula Architecture for
JOVIAL Data Contructs, Dept. of Computer Science, Univ. of Maryland,
Tech. Report TR-1051, USAF grant AFOSR-79-0056.

26 WD/90 Pascal Microengine Reference Manual, Western Digital, Newport
Beach. CA, 1979.

27 Introduction to the iAPX 432 Architecture, Intel Corportaion, Santa
Clara, CA, 1981.

28 Patterson, D. A., Ditzel, D. R., "The Case for the Reduced Instruc-
tion Set Computer," ACM SIGARCH Computer Architecture News, Vol. 8,
No. 7, 1980.
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architecture; in fact, Nebula is similar in many respects to a VAX.29

The most likely consequences of this choice are inefficient support for

security and, if Ada is successful, weak support for Ada (relative to

architectures of the day which can be designed for Ada using experience

gained from Ada usage). In any case, the general type of architecture

chosen was not evaluated.

Other Comments

There were several comments mentioned in the Introduction, to summarize:

1. The design of Nebula was not time-phased very well with

the design and implementation of Ada - the language that

is expected to predominate on Nebula machines. When

Nebula was designed, there was no experience with Ada

programs. Neither an implementation, nor even a lasting

design of Ada existed.

2. To the degree that the low-risk design criteria is met,

the capabilities of Nebula should be considered in light

of expected capabilities of architectures in the late

1980s and 1990s rather than to architectures in use

today.

3. The Nebula design had the luxury of not having to exhibit

29 The VAX Architecture Handbook. Digital Equipment Corp., 1981.
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any type of compatibilty with any existing software.

Future modifications of the architecture are likely to be

severly restricted due to software compatibility consid-

erations - even when modifications are being attempted

to correct parts of the design shown to be inadequate.

There should be a high degree of confidence with the

architecture before it is finalized due to the relative

ease and low cost of changes made now rather than later.

4. With respect to the research in architecture, it should

be kept in mind that while advances in implementation

technology can perhaps be inserted into future genera-

tions of Nebula computers, advances in architectural

technology, for the most part, will not be easily

inserted since they are more likely to impact program

portability.

Implementation Problems

This report did not consider implementation in its evaluation. Thus

implementation problems, and more importantly, the effects of possible

implementations on certain features of the architecture were not ana-

lyzed.30

30 Both the memory management system and the treatment of registers
implicitly assume non-standard implementation techniques.
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NEBULA'S STRONG FEATURES

Much of this report deals with criticism of Nebula. Little has beer.

mentioned about the positive aspects of the ISA. While Nebula has 7

assets, the problem areas are precisely what needs to be considered for

impact and possible modification of the ISA. This section presents some

of the more praiseworthy features of Nebula. The praises for these fea-

tures, however, are qualified; the features introduce, directly or indi-

rectly, many limitations.

5 - .J - -

Goals of Nebula's Designers

The goals of Nebula and of the designers3l 32 are, in general, laudable.

Some of these goals are discussed in Section 3; others were adherence to

the following principles of architectural design:33

* Regularity

*Orthogonality

* Composability

"One versus all".

31 Szwerenko, et. al., "Nebula: A New Architecture and its Relationship
to Computer Hardware," Computer, Vol 14, No. 2, February, 1981, pp.
35-41.

32 Dietz, W., "Nebula Design and Rationale", Carnegie-Mellon University,
a paper from Proceedings of Panel on Effect of Nebula ISA on Ada,
edited by lartin, E., Hammond, Major D., 15th Annual EIA G-33 Commit-
tee Computer Resources, Data and Configuration Management Workshop,
September, 1981.

33 For an informal discussion of these, refer to Wulf, W., "Compilers
and Computer Architecture," Computer, Vol. 14, No. 7, July, 1981, pp.
41-47.
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Instruction Format

One of the most sound and carefully thought out areas of Nebula is the

instruction format. There are two general features worth mentioning

here: the size of a memory operand is encoded in the operand specifier,

rather than in the opcode; binary operations are usually provided in

both two and three operand formats. Encoding the size in the operand

specifier rather than the opcode, and providing many binary operations

ir. the three operand format may result in many benefits. The size

encoding is probably Nebula's most noteworthy feature. It can drasti-

cally reduce the total number of opcodes needed. It also makes the com-

piler writer's task easier by largely eliminating the optimization anal-

ysis which determines what sizes to allocate to variables and when to do

size conversions.

In actual fact, the ISA does not meet the regularity or orthogonality

conditions sometimes claimed (PORTA!3ILITY], [MISC]. The ISA is not reg-

ular with respect to these features because there are binary arithmetic

operations that exist only in the three operand format and because all

operands are not operand specifiers (this happens in 25% of the instruc-

tions). The size of an operand specifier is not orthogonal to the

opcodes both because all operands are not determined by operand specifi-

1-4.7
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ers, and because the opcode interprets some operand specifiers as

address operands.

Nebula's Support for HOL Procedure Interfaces

Nebula's procedure interface provides support for HOL procedures and

provides a mechanism which many different parts of Nebula (task initia-

tion, interrupts, vectored operating system calls, exceptions, traps and

OPEXs) can use. Many of the reports discuss problems with this inter-

face. Because of the commitment to using exactly the same interface for

* many different functions, the designers were faced with making tradeoffs

between the contradictory demands for quick interrupt response and for

providing as much help as possible for HOL procedures calls.

Enhanced I/O Security

Another feature of Nebula is the use of virtual addresses in the I/O

controllers to enhance security. It may be the most helpful, and the

only really innovative, feature of Nebula for supporting security.

Because the data buffer, message pointer and channel program must each

lie within a segment, there are two unfortunate consequences. First, as

explained in the report on multiprocessing, this doesn't allow the chan-

nel to do scatter/gather I/0 message processsing into different users'

processes without the intervention of the CPU. Second, as mentioned in

the virtualizability report, it restricts the flexibility of the CPU in

mapping segments when setting up segments for a virtual machine.

1-4..-8 ,-.
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NEBULA'S SUPPORT FOR ADA

ADA SUPPORT

Efficient support for Ada should be one of the two most important con-

cerns in evaluating the Nebula architecture. The paper in Part 2 is not

a general analysis of Nebula's support for Ada, but is actually the

third in a series of reviews. It takes up where the earlier reviews

left off. Further evaluation of Nebula and Ada was also done and is

discussed here and in [MISC]. The first review34 35 was written by Mark

Davis of Intermetrics under contract to CECOM in February of 1981. This

report pointed out areas where there were no problems (e.g. support for

Ada's data types) and discussed several problem areas (e.g. uplevel ref-

erences of parameters, copy versus reference parameter passing, Ada

tasking). Some minor changes to the architecture were subsequently made

by the Nebula Control Board,36 but most of the problems raised were not

resolved. The second review was part of the general review of Nebula

conducted by the EIA from January to April of 1981. The Ada portion of

this review was written by Roger Arnold of Boeing Aerospace Corpora-

34 Davis, M., Nebula as a Target for Ada, IR #655 Intermetrics, Febru-
ary, 1981.

35 'ark Davis wrote an update to this report in June ("Nebula as a Tar-
get for Ada: Summary and Update", June, 1981). This summarized the
changes to Nebula concerning Ada, reviewed the findings of the origi-
nal report, and discussed the author's changes in viewpoint on some ....

of the problems.

36 These changes involved treating parameters more uniformly (previously

there were restrictions on accessing parameters after number 7) and
several changes to the exception handling mechanisms.
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tion.37 38 A consensus was reached on the following points in the

review:

1. The context frame/call mechanism must support "cactus

stack".

2. Display based addressing is "highly desirable".

3. The uniform treatment of parameters and local data is

"highly desirable", both with respect to modes of access

and uplevel referencing.

4. Better range checking is needed.

5. Task management and intertask communication needs study.

The following list is the prioritized list of issues for further consid-

eration that came from this EIA review:

1. Multitasking within a common memory space

2. Uplevel referencing of parameters

3. Uplevel referencing of variables

4. Range checking

5. Inter-task communication

6. Copy versus reference parameter passing

37 Martin, E. W., Fischer, H., Fagg, A., Arnold, R. D., James, J.,
"Report of MIL-STD-1862 REVIEW COMMITTEE d.b.a. NEBULA REVIEW .
COMMITTEE", Electronic Industries Association G-33 Data and Configua-
tion Management Committee Computer Resources Task Group, June 1981.

38 The following paper was also written as part of this review: Arnold,
R. D., "Ada and the Nebula Architecture", Boeing Aerospace Corp.,
February, 1981.
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7. Joint context and data frames

8. 'emory protection

9. Referencing parameters greater than 7

10. Necessity of the compound parameter mode

Of these two lists, only the issue on referencing parameters greater

than 7 resulted in a change to Nebula.

One of the areas that received little attention in the two earlier

reviews was the implementation of Ada tasks on Nebula. The paper in

Part 2 of this report primarily investigates this area. Several possi-

ble implementation strategies are discussed; they are shown to be gener-

ally inadequate. Two sets of changes, one upward compatible and one

incompatible with the present version of Nebula, which give Nebula bet-

ter support for Ada tasking are then discussed [ADA p. 13].39 Besides

supporting tasking in Ada the incompatible changes also provide some

support for the data frame.

The following is a prioritized list of the suggestions of this report

concerning Ada:

1. Modify CALL and RET instructions, and add LIMITED CONTEXT

SWITCH instruction for Ada tasking.

2. Modify integer truncation such that if a truncation

39 Also, see the subsection on Ada tasking later in this section.
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exception is to be raised as a result of an operation,

then the result won't be written to memory. The instruc-

tion will be aborted and the exception will be raised.

3. Add an instruction analogous to RANGE with floating point

operands.

4. Consider the addition of more support for range checking.

5. Add hardware support for the data stack. This may include

several of the following:

a. Hardware allocation of the data frame

*b. Hardware supported display and display based

addressing modes

C. Remove parameters from context stack and incorporate

them on data stack. The parameters may still be

passed by the call instruction, but the parameter

addressing modes would be deleted. Parameters would

be accessed in the same manner as local data.

d. Include support for uplevel referencing of data and

parameters.

6. Provide more access to information in suspended procedure

* contexts. If changes from the previous point don't allow

uplevel parameter references, then changes made under

this point should.

*Points 1 and 2 are discussed in [ADA] and (MISC] respectively. Points 3

and 4 concern hardware support for run-time checking. This is an area

q 1-4.12
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where languages need hardware support and aids for compiler optimiza-

tion. Because of inefficient support for run-time checking in implemen-

tations, there is a tendency to turn the feature off, thus negating a

very useful feature in Ada. One problem with providing support for this

with Ada, is that there is a large measure of uncertainty: in how much

optimization the software can do, to what extent programmers will remain

within cornstraints,LIO and as to how efficient will the hardware solution

be. In any case, Nebula should consider providing more support, but not

in a way which interferes with the ability of the compiler to optimize

away a particular run time check. Changes along the line suggested by

Dwight Hill of Bell Labs should be considered.41 42

Concerning point 5, in both the EIA review and this one, it was felt

to be an area where Ada as well as any other Algol-like HOL (e.g.

JOVIAL) could use support. Further, given the complexity of the present

support for HOLs, it was worth serious consideration. Although useful

support for Ada, some of the changes mentioned in point 5 are inappro-

priate at this stage of the design.

40 There are several optimization techniques that can help with run-time
checks. The success of the various techniques depends, in part, on
programming style.

41 Hill, D.. "A Hardware Mechanism for Supporting Range Checks," ACM
SIGARCH Computer Architecture News, Vol. 9, No. 4, June, 1981.-

42 Hill's suggestion might be modified by additional instructions which
check only one bound. If software optimization showed that one bound

- .,%,
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Support for uplevel references should be provided. There are many

reasons why access to suspended contexts in the context stack is needed.

Also, the concept of requiring recompilation of enclosing units when a

subunit is recompiled is not really in keeping with the spirit of Ada.

Even allowing that it was. cases would arise where recompilation is

either impractical or impossible. The compiler would have to have the

ability to create a copy of all potentially uplevel addressable parame-

ters on the data stack. The likely result of this requirement is that

compilers will not use the Nebula parameter passing mechanism.

WRITING PORTABLE PROGRAMS FOR NEBULA

Portability is the second of the two primary concerns in evaluatin~g

Nebula, and is the area containing Nebula's most serious problems. In

addition to [PORTABILITY), in which the concepts and deficiencies are

discussed at great length, these problems also arise in a number of

other papers in Part 2, especially (MISC). In particular. (MISC) con-

tains the fullest description of the portability issues stemming from

the differing Air Force and Army goals, and discusses the overall ques-

tion of how Nebula's portability deficiencies may impact the Air Force.

"Portability" simply means being able to take a program written and

debugged in one environment and have it function Identically in another.

* I. .."i •
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Both IBM and DEC have produced series of computers that support port-

ability, and it is a significant advantage for each company. As

detailed in [PORTABILITY], however, MIL-STD-1862A is not precise enough

to be the specification for such a series of computers. Neither the

general outline of the machine's operation nor its behavior in an enor-

mous range of special situations is sufficiently well specified for the

construction of "plug-compatible" machines by several different vendors.

It is possible, in fact, that a single vendor might produce incompatible

versions of Nebula, all of which fully satisfy MIL-STD-1862A.

* In addition to documenting "some of the most important, most obvious.

and most ir.teresting" portability deficiencies in NIL-STD-1862A,

[PORTABILITY] also suggests a plan by which a standard architecture may

be designed and managed for "controlled non-portability". This

requires, first, a complete and unambiguous definition of the ISA, and

then a "consistent set of principles" by which implementation dependen-

cies may be permitted. Most important of these principles should be a

low cost-benefits ratio, where "cost" relates to the problems caused by

non-portability and the difficulty of dealing with them, and "benefits"

measures the expected improvement in machine price or performance

* resulting from allowing the implementation dependency.

* I1-4J.15* a-A
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PROBLEM AREAS AND SUGGESTED CHANGES

The reports in Part 2 raise many concerns with Nebula, and suggest sev-

eral changes to the architecture to alleviate these problems. The sug-

gested changes are either in the form of a specific change or of an

approach to resolving the particular problem. This section summarizes

several of those concerns and suggested changes. It is organized by

subsection of MIL-STD-1862A rather than by area of the individual

reports. See the appropiate reports in Part 2 for a full explanation of

ar.d rationale for the changes.

Procedure Interface

The procedure interface (the procedure call mechanism, the context

stack, and the parameter addressing modes) is a central feature of

Nebula. However, a majority of the reports discuss problems with and

suggest changes to the procedure interface [ADA], [JOVIAL],

[PORTABILITY], [VHLL3, "VIRTUALIZABILITYJ, [MISC].

A central feature of the procedure interface is the context stack. A

context stack is a stack of procedure contexts that are pushed and pop-

ped by the procedure call and return instructions. Each procedure con-

text consists of: the registers used by the procedure, the parameters of

the procedure, the PSW of the procedure, and the state of the proce-

dure's exception handler.

The procedure interface provides HOL support by saving and restoring

4registers and by establishing and accessing parameters. It provides

additional support for Ada by maintaining the state of the exception

1-4.16
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handler and propagating exceptions. Context switches caused by inter-

rupts, supervisor handled exceptions, debugging breakpoints, traps, arnd

task initiations use the procedure interface. Nebula's support for

security is also related to the procedure interface. A context stack

can simultaneously contain procedure contexts of procedures executing in

privileged mode, in supervisor mode, in both, or in neither.

Allowed access to the context stack: Access to the context stack in

Nebula is restricted -- partly to give freedom to implementors. In the

current procedure context, the parameters, registers, and exception han-

dler may be accessed via either the addressing modes or the exception

handling instructions. Except for the condition code bits and the

Enable Arithmetic Error (EAE) bit, there is no way to access the PSW of

the current procedure. Access to suspended procedure contexts is very

restricted. The privileged instructions, LPSW and SPSW, provide access

to the PSW of the caller's context. The only other method for obtaining

access to information in suspended context stacks is using the parame-

ters of the current procedure context. These parameters can reference

anything that was accessible to the caller which includes the registers

of the caller and the objects referenced by the caller's parameters.

Design Prinolipl* Violations: Nebula's problems with the procedure

interface primarily arise from failing to heed three of its design prin-

ciples: low risk design; orthogonality; primitives rather than solu-

tions. The procedure interface is actually one of the highest risk fea-

1-'4. 17
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* - tures of the Nebula design, but there simply wasn't enough time in the

design schedule to do the necessary software and hardware evaluation to

* -get the details of the procedure interface correct. A violation of the

second principle is the entanigement of security features with the fea-

tures supporting HOLs. This entanglement is partly responsible for the ..

difficulty in finding changes to alleviate the problems with the proce-

dure interface.

It is the violation of the third principle that is most obvious; sim-

ply being problematic solution, inadequacies with the solution arise -

precisely the reason to avoid solutions and provide primitives. This

can be illustrated with two examples of problems associated with provid-

ing solutions rather than primitives.43

First, Nebula doesn't provide primitives for helping the compiler

writer generate an efficient procedure interface but attempts to provide

a solution. The procedure interface provides HOL support by maintaining

some of the information traditionally kept on the software-maintained

data stack (i.e. the parameters, saved registers, exception handler

state) on a hardware-maintained stack (the context stack). The informa-

tion is used in a particular way: parameters are passed by reference,

* registers are not inherited (except Rl), all registers are always saved

and restored across procedure calls. Nebula doesn't help the compiler

writer with the data stack maintenance, but rather appropriates part of

the data stack, isolates this part from the compiler writer, keeps it on

* 43 Wulf, Willian A., "Compilers and Computer Architecture", Computer,
Vol. 14, No. 7, July, 1981, p. 43.
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a separate stack (complicating stack space management), and tries to

provide the support needed for this stack.

Second, in restricting themselves to a solution, the designers had to

trade-off the needs of context switches for interrupts (fast. but with

complete state saved) with the needs of HOL procedure calls (putting

some operations of the prolog software into the hardware for faster pro-

cedure calls, incorporating a flexible approach to amount of state

saved, and performing these operations in a manner compatible with vari-

ous HOLs). It may )e that much of the mechanism provided makes more

sense as a context switch mechanism and that instead of associating the

interrupt and trap invocation mechanism with the procedure interface, it

should be associated with task switching.

Procedure Interface problems raised b Reviewers:

References to data in stacked procedure contexts: Since the regis-

ters and parameters are objects under the compiler's control, the compi-

ler may need access to them. Not allowing this access restricts what _

can be stored on the context stack. Earlier reports on Nebula and

Ada,44 45 46 have pointed out that this means parameters which are

potentially up-level referenced can't exist only on the context stack.

44 Davis, M., Nebula as a Target for Ada, IR #655 Intermetrics, Febru-

ary, 1981.

45 Martin, E. W., Fischer, H., Fagg, A., Arnold, R. D., James, J.,
"Report of MIL-STD-1862 REVIEW COMMITTEE d.b.a. NEBULA REVIEW
COMMITTEE", Electronic Industries Association G-33 Data and Configua-
tion Management Committee Computer Resources Task Group, June 1981.

46 Arnold, R. D., Ada and the Nebula Architecture, Boeing Aerospace
Corp., February, 19T.
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This is also a problem for LISP and JOVIAL [VHLL], (JOVIAL]. It is a

problem for LISP not only because of up-level parameter references, but

also because of the demands of garbage collection and interactive debug-

ging. Further, though possible in Ada and JOVIAL, in LISP it is impos-

sible for the compiler to determine which parameters are actually up-

level referenced.47 Partly because of this, it is felt that

implementations of LISP would not use the CALL instruction.

In running virtual machines, privileged instructions must be simu-

lated by the real supervisor (VIRTUALIZABILITY]. To simulate these

instructions, the privileged instruction trap handler will need access -

to the parameters and registers of the procedure context which caused

the trap. However, they are inaccessible in Nebula.

Two proposals are presented which give the programmer more access to

information in suspended procedure contexts (JOVIAL], [VHLL1.

Parameter passing methods: (JOVIAL) and [ADA] also discuss problems

with passing parameters. In Nebula parameters are passed by reference;

in both JOVIAL and Ada other methods are also required, e.g. call by

value. Given this mismatch, parameters which are not passed by refer-

ence must be handled separately; they must be explicitly copied by soft-

ware in some manner (ADA p. 6]. 48

47 To do this analysis in Ada requires recompilation of enclosing units
when a subunit is changed.

48 Davis, M., Nebula as a Target for Ada, IR #655 Intermetrics, Febru-
ary, 1981, p. 8.
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Hardware solutions to this problem, involving a bit vector in the

procedure descriptor to indicate the passing method, are discussed in

[JOVIAL].49 Unfortunately, these solutions are not conceptually clean;

they add complexity to the procedure interface. Also, rather than

resolving the general problem, they only solve it for Ada and JOVIAL ,

(and other languages that use a subset of the parameter passing methods

of Ada and JOVIAL).

Procedure Interface and Ada Tasking: Nebula provides no support for

the type of tasking provided in Ada.50 Further, by enforcing use of a

true stack for the context stack in an Ada program, Nebula's procedure

interface provides an obstacle to implementing Ada tasks. To meet the

requirements of managing the activation records for a large number of

tasks, a more complex data structure, typically a "cactus stack", is

required [ADA p. 2). While a cactus stack can be used for the data

stack, the context stack which contains some of the information main-

tained in the activation records is maintained by the hardware as a sim-

ple stack.

To resolve the problems of the context stack supporting Ada tasking,

three instructions are proposed: a new internal context switch instruc-

Stioh, a modified CALL instruction, and a modified RET instruction [ADA

p.14]. The old CALL and RET instructions would be upward compatible to

49 Arnold, R. D., Ada and the Nebula Architecture, Boeing Aerospace

Corp., February, 1981, p. 8'

50 Nebula's tasking instructions switch virtual memory spaces and, while

useful for scheduling users, are not appropriate for supporting task-
ing within an Ada program.
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the new CALL and RET instructions. The internal context switch

instruction would be used for switching Ada tasks; it would change the

value of the context stack pointer, but would leave the address space

unchanged. These instructions would allow the hardware supported con-

text stack to be a "cactus stack."

Support for the Data Stack: An additional change suggested for Ada

supporv. is the extension of the procedure interface to include support

for the data stack [ADA p. 17]. This change would not be upward compat-

ible. Other suggestions for this type of support were also made in

reviews of Nebula [JOVIAL].51 52 If hardware support for high order

Algol-like languages is a goal of the architecture, then rather than

implementing a portion of the data stack in the hardware, a more appro-

priate solution is to provide a general support mechanism for the data

stack which includes addressing modes for both local and global data and

activation frame space allocation.

Effects of Procedure Interface Problems: Without changes to the archi-

tecture, the likely result of the mismatches is that compilers will

avoid the hardware features in Nebula for HOL support. The above men-

tioned problems with the parameters may cause compiler writers to avoid

the hardware parameter passing mechanism in favor of using the usual

51 Martin, E. W., Fischer, H., Fagg, A., Arnold, R. D., James, J.,

"Report of MIL-STD-1862 REVIEW COMMITTEE d.b.a. NEBULA REVIEW
COMMITTEE", Electronic Industries Association G-33 Data and Configua-
tion Management Committee Computer Resources Task Group, June 1981.

52 Arnold, R. D., Ada and the Nebula Architecture, Boeing Aerospace
Corp., February, 1981.-
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software methods. The problems with supporting tasking might cause them

to abandon altogether the procedure call and return instructions (CALL,

RET) in favor of the "jump to subroutine" and "return from subroutine"

instructions (JSR, RSR) [ADA p. 11). it might be noted that even trying

* to avoid using the procedure interface can lead to problems as the rest

of the architecture (SVCs, OPEXs, etc.) will continue to use it [ADA p.

lii.

Traps, Exceptions, and Interrupts

Most of the problems with these parts of Nebula were: associated with

the procedure interface (traps, exceptions, and interrupts are invoked

through the procedure interface), a result of underspecification, or

involved portability issues. The problems related to the procedure

interface generally involved lack of access to needed information on the

context stack. For discussion of issues affecting portability or

resulting from underspecification see [PORTABILITY) and [MISC). Other

issues are discussed below.

Privileged instruction trap: [VIRTUALiZABILITY, p. 5) discusses the

problems when a virtual machine, running in virtual privileged mode,

*tries to execute a privileged instruction. As virtual machines always

run in unprivileged mode on the real machine, when the virtual machine

"executes" a privileged instruction a privileged instruction trap will

occur. The real machine will simulate the instruction for the virtual

machine. This presents several problems.

* 1-14.23
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1. Any registers or parameters accessed by the instruction

being simulated are in the context stack of the virtual

machine and inaccessible to the privileged instruction

trap handler.

2. Since aliasing of segments isn't allowed, if the privi-

leged instruction is in an "Instruction Access Only" seg-

ment, the segment will have to be remapped with the

REPENT instruction before the trap handler may access the

instruction.

3. After simulation, the virtual machine must be resumed at

the instruction following the privileged instruction

which was just simulated. Nebula provides no way for the

trap handler to change the program counter of the virtual

machine or resume the suspended task at a point other

than the point of interruption.

4. Certain instructions, for example PTASK, PRAISE, PINIT,

and SETSEG, manipulate or create implementation dependent

data and are impossible to simulate without more informa-

tion than is provided in MIL-STD-1862A.

These points are not only problems for virtual machines. Even when not

running virtual machines, the privileged instruction trap handler, the

memory management trap handler, the scheduler, and the supervisor excep-

tion handler may face some of these problems in trying to perform their

functions.
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There is also a problem when a virtual machine running in virtual

non-privileged mode encounters a privileged instruction

VIRTUALIZABILITY p. 611. Nebula will trap to the real machine's privi-

leged instruction trap handler. The real machine should then simulate a

*trap to the virtual machine's privileged instruction trap handler. A

task can be initiated on the virtual machine's virtual kernel context

stack at the address specified in its trap vector using the tasking

instructions, but Nebula doesn't provide a mechanism for the required

parameter to be passed.

One of the changes suggested to help make the ISA virtualizable is

the addition of a PRIVEX vector that would function analogously to the

* OPEX vector. tVIRTIJALIZABILITY p. 121

Exceptions: JOVIAL p. 46 recommends reserving an exception code which

the JOVIAL compiler would use for ABORT statements. This would enhance

portability of JOVIAL programs. It is further suggested that some

exception codes be reserved for hardware exceptions that may be added in

future revisions of Nebula (MISC]. These points suggest that to enhance

portability, exception codes should be treated like unused opcodes and

be either reserved or allocated to particular groups.

In Nebula, propagation of an exception isn't required to be interrup-

tible. Thus a long call chain could lock out interrupts for significant

periods of time -- potentially causing problems for both security and

system responsiveness.

* 1-41.25
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Interrupts: [FAULT-TOLERANCE] and [1/0] commented on interrupts in

Nebula. The only problem raised by [FAULT-TOLERANCE] was the absence of

a concept of processor failure. [FAULT-TOLERANCE] suggested the ability

to have an "I am dead" signal so the hardware could signal the software

and/or the outside world of a processor failure, and a "you are dead"

line so a processor, upon detecting failure of another processor, could

signal it to shut down. To effect this, a processor failure interrupt

should be added which would have as a parameter an implementation depen-

dent fault code indicating the type of failure. The interrupt handler

could be part of the non-portable kernel software associated with a par-

ticular Nebula implementation.

Because of the specification of the location of the interrupt vec-

tors, a maximum of ten I/O controllers may be attached to a Nebula

implementation. If directly connected devices which can interrupt

Nebula are also attached, this number is even smaller [I/O pp. 15, 19].

Another problem is that the association of physical vector addresses for

the interrupt and the address of the IOC register block causing the

interrupt is not programmer visible. [I/O p. 19] suggests changes to

the architecture to solve these two problems.

Memory management

The memory management system wasn't directly studied as part of this

evaluation (see comments under "Areas Needing Further Study" below).

m- .

However, [VHLL], [VIRTUALIZABILITY], [PORTABILITY], [MISC), and

[DATABASE] did comment on the memory management system. ,.

9 1-4.26

%. V

• ..... .

- ;. -.. .".--, - -. . .- .,.. '- . .. .- .'.. .-.-. . .. .. . - ..-. ... . • -.. -.. . . . ,- -. -, ,-. . ".



.1 "

The memory management system was felt to be inadequate for large LISP

programs [VHLL p. 6]. A scheme to use the memory map to implement a

demand paging system was discussed. However, subsequent changes to the

standard have made any such schemes impossible.

(VIRTUALIZABILITY] suggests that the restrictions on the number of

segments provided be removed. It suggests that there should be no
I

restriction, but rather a performance penalty if the number of segments ...

in a map exceeds the number of cached entries provided by the hardware.

There is also a problem with supporting the number of segments that

exist in the real machine on the virtual machine [VIRTUALIZABILITY p.

3]. When executing in the virtual machine, one of the segments in the

supervisor map will have to be reserved for the trap and interrupt han-

dlers of the real machine. This will deny the virtual machine of at

least one segment in its supervisor map.

I/O

Several papers commented on IO in Nebula [MULTIPROCESSING], [I/O/,

[VIRTUALIZABILITY], [DATABASE]. For both multiprocessing and database

application, it was important to be able to offload communications pro-

cessing to the IOCs. [1ULTIPROCESSING) found the IOC inadequte for this

task. Timer support was required in the IOCs. More instructions were .

desired to perform checksum calculations and bit stuffing operations.

[I/O] commented on several problems in the area of the IOC to CPU

interface.

1. The SETSEG description contains no restriction on issuing

I-4.27
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the instruction while the IOC is active.

2. The maximum IOC interrupt priority is not normally pro-

gram visible; the priority of an interrupt is coded in

the INT instruction which resides in a instruction-access

segment. Therefore, a program cannot find out the maxi-

mum priority allowed by an IOC, and would have trouble

changing the priority in the INT instruction even if

access were allowed. [I/O] suggests that requests for

greater than the maximum IOC priority be treated as if

they requested the maximum and no IOC error be reported.

3. The state of a Nebula machine following a RESET or IPL

sequence is inadequately specified. Also, the format of

the IPL data should appear in the standard.

4. The limitations on the number of IOC's (10) may be sev- ,

erelylimiting in larger configurations. [1/0] suggests

solving that problem along with problems caused by lack

of program visibility to the interrupt vector by treating

IOC interrupts in a fashion that is consistent with SVC

and OPEX interrupt handling.

Instructions

StringInstruotions: [DATABASE p. 6] proposed modifying the CMPBK (Com-

pare Block) instruction to test for all six relational operators (=, <=,
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>=, <, >, <>), rather than only equality; this report also proposed mod-

ifying CMPBK to work with strings of different lengths. (PORTABILITY)

raises several issues concerning interruptible instructions.

Procedure call and task switching instructions: As discussed above,

[ADA p. 143 proposes modifying the context stack to support tasking in

Ada. This involves upward compatible changes to the CALL and RET

instructions and the introduction of a new internal context switch

instruction. This instruction would change the task context stack

pointer but would not change the user map pointer. Thus a task switch 4
would occur but the same address space would be used. An additional,

but incompatible change is also suggested to the CALL and RET instruc-

tions -- support for allocation of the data frame. The above mentioned

support for the allocation of context frames would be extended to sup-

port data frames.

EVIRTUALIZABILITY pp. 7, 11] discusses the need for the real machine

to be notified whenever the virtual machine changes privilege or super-

visor/task status. That is, the real machine must know in what mode,

privileged or non-privileged, the virtual machine thinks it is operat-

ing. Nebula doesn't allow for this. In particular, ERET, ERP, CALLU,

and RET can change this status and the real machine has no way of know-

ing. Two possible methods of resolving this problem are discussed:

addition of microcode to keep track of which mode a virtual machine was

operating in, or the addition of a PRIVEX vector (see above, "Privileged •

Instruction Trap)." An alternative solution which requires more exten-

1-4.29
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sive microcode changes is to add an instruction which operates like

LTASK but additionally maintains several flags indicating virtual

machine privilege status which can then be maintained by the microcode

implementing sensitive instructions. This additional microcode for

these instructions would not be executed unless a flag was set indicat-

ing that a virtual machine was executing.

AREAS REQUIRING FURTHER STUDY

There are several areas of Nebula which were not studied and which need

to be investigated, namely: r

1. The memory management system has been one of the most

controversial parts of Nebula because of: its segmenta-

tion approach, its failure to guarantee to the programmer

more than 16 segments in a map, and the absence of sup-

port for demand paging. It has been accused of biasing

the design to constraints of the microcomputer implemen- t.

tations and providing too little support for minicomput-

ers. At the same time, the microcomputer implementations

_4 may not require the costly segmentation and relocation

hardware. Several of the reports comment on the memory

management system, namely: virtualizability, multipro-

cessing, database management systems and miscellaneous.

However, it has not been directly investigated.

2. Both the database management system and multiprocessing • -
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reports stressed the need for the IOC to do some of the

communications processing. Since those papers did point

out some weaknesses, the ability of the IOC to do this

work needs to be further investigated.

3. One of the costliest features in executing Ada programs

may be run-time checking for constraint errors. Ineffi-

ciencies in program execution speeds resulting from this

leads to suppression of the checks. Nebula would serve

Ada well by providing as much support as possible for . .

range checking. Presently this is supported only by the

RANGE instruction.

4. Several features of Nebula, for example the memory man-

agement system and the context stack, require special

implementation techniques to be efficient. Investigation

of implementation techniques available across the desired

performance range, and the effect that possible implemen-

tation techniques may have on the reviews of that feature

of Nebula needs to be performed.

1-4.-
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Section I

INTRODUCTION

The major effort involved in this review of the Nebula ISA was perform-

ing studies in several areas. This section contains the reports result-

ing from those studies. The areas investigated were:

• Support for Ada

* Portability

* I/O

* Support for JOVIAL

* Fault-tolerance

* Virtualizability

* Support for Very High Level Languages, e. g. LISP and SAIL

* Data-base system support

* Multiprocessing

* Miscellaneous

These are listed in order of priority. The priority of the report

affects the findings since a higher priority area will be more justified

in suggesting changes to improve support for that area than a lower pri-

* . •ority area. Thus, for example, given a construct that hinders both Ada

and JOVIAL implementations, the Ada paper is more likely to suggest that

a change be made.
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1.0 Introduction

In the industry review of the proposed MIL-STD 1862 computer ar-
chitecture conducted by the Electronics Industries Association
(ETA), a number of potential issues were raised. These issues

were classified as management issues) Ada issues, and detailed
* instruction set architecture (ISA) issues.

During the review process and in a one week intensive meeting of
the Nebula Technical Advisory Board in May, most of *the issues
raised by the ETA's review committee were satisfactorily resolved
in one manner or other. An exception, however, was virtually the
entire set of issues related to the implementation of Ada on the
Nebula architecture. The board reportedly discussed the issues
at some length, but could reach no consensus as to a desirable
set of changes that would resolve the issues. As a result, it
recommended no change to the architecture in the areas in ques-
tion.

The decision to recommend no changes relating to Ada issues is
disappointing, but understandable. The development schedule for

* the Army's Military Computer Family program (MCF), which depends
on the Nebula architecture, created a good deal of pressure to
freeze the definition of the architecture early, and to
discourage major changes. Resolution of the most serious Ada is-
sues would have required relatively far reaching changes in the

*architecture. There simply was not sufficient time to develop
agreement on such a set of changes. However, the unresolved is-
sues leave DOD procurement officials and prospective implementors

*of Ada with some difficult questions to resolve.

The most basic question that must be decided is whether to try to
live with the standard as it now exists, or to press for at least
some additional changes that would facilitate Ada implementa-
tions. The sections that follow discuss some of the options that
are available, an~d some of the pros and cons of the various
choices. Section 2 briefly reviews the issue of memory manage-
ment in an Ada multitasking environment, which was identified
during the industry review as the single most critical Ada issue. -

Section 3 reviews other significant Ada issues. Section 4 consi-
* ders options available if no changes in the standard are sought,

while section 5 considers options available when varying degrees
* of change to the standard are allowed.

11-2.1
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2.0 The Memory Management Issue

Ada's concept of tasking is based on the notion that programs can
be and often are most naturally organized as collections of
parallel, communicating processes. This approach is not new. It
has been around for many years in such languages as Simula,
k lgol-68, Modula, Small Talk, and Concurrent Pascal [5, 14]. It
is closely akin to the concept of co-routines, which have been
implemented in a wide variety of general and special purpose
languages [9, 13] . However, it has not previously been a central

"- feature of a "mainstream" programming language.

A common characteristic of languages employing multiple parallel
processes is that individual procedures do not execute in a
strictly "last in, first out" manner. This means that a simple
stack is no longer a suitable mechanism for managing their ac-
tivation records. For example, one task, task "A", may execute
for a period of time and then be suspended. Another task, task
"B", may then execute for a time before it, too, is suspended.

- If task "A" is resumed at that point and attempts to make a call,
* it will find that the stack is blocked by activation records for

* the suspended task "B" which must not be overstored.

2.1 General Approaches

There are basically two solutions to the problem described above.
One is to use multiple stacks, reserving blocks of memory suffi-
cient to give each task its own stack. This is an efficient
solution when the number of tasks is small and there is limited
communication among them. It breaks down, however, when the
number of tasks is large. This will be discussed in more detail
shortly.

The other solution, and the one which is normally preferred for

the implementation of multitasking languages, is to use a more
complex data structure than a stack for the management of activa-
tion records. One alternative is a fully general data heap.
This is expensive, however, unless dynamic memory management is
directly supported in the processor architecture. It is also
more general than really needed, since procedure activations
remain "last in, first out" within individual tasks. A better
alternative is therefore a modified type of stack capable of
spawning "side stacks" at arbitrary points. Linear storage is
used for both the original stack and its offshoots, making the

4 physical structure in memory a sequence of discrete stack seg-
ments connected by links. The logical structure, however, is
suggestive of a saguaro cactus, so the structure is usually re-
ferred to as a "cactus stack". A set of algorithms for the
management of a cactus stack is described in appendix A.
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2.2 The Nebula Model

For the Nebula model of tasking, the memory management solution
of separate stacks is strongly assumed. The Nebula call mechan-
ism divides the general concept of "activation record" into two
parts-- a "context frame", managed by hardware, and a "data
frame", managed by software. For the allocation of context

. records, at least, the assumption of separate stacks is firmly
wired in" to the call mechanism. A task must have an open con- .. ,

text stack for the call mechanism to function properly, since a -.-
new context frame is created simply by decrementing the current ..
context frame pointer by an appropriate amount. On a return, the I
caller's context frame is reestablished by incrementing the
pointer by the size of the current frame. There is no provision
for a dynamic link within the context frame, so frames must be
contiguous. This minimizes procedure call overhead and optimizes
the design for an expected style of programming in which tasks
are relatively isolated, and task calls are greatly outnumbered
by procedure calls.

Minimizing procedure call overhead is certainly a reasonable
goal, but the assumptions behind the Nebula model for tasking are
questionable. In particular, the assumption that each task can
be allocated a sufficiently large block of memory to run with its
own separate stack is out of line with the number of simultane-
ously active tasks that can be reasonably anticipated for at .

. least some Ada programs. Part of the problem is that the com-
piler cannot know, in general, how much stack space a particular
task will require; depth of recursion is often data dependent,

* and separate compilations make it difficult even to determine if -- -

a task will use recussion. But even if a perfect projection of -
stack space requirements could be made for each task, memory ..
utilization would still be unacceptably poor in many cases. To
avoid memory faults, the compiler would have to allocate to each
task the maximum amount of space it would ever need; yet in ap-
plications where tasking is heavily utilized, most tasks spend
most of their time in a "dormant" state with minimal space re-
quirements. -

As an example of how tasking might be used in real time applica-
tions, the ACM SIGPLAN Rationale for the Design of the Ada Pro-
gramming Language contains a sample Ada package for supporting
radar track management [11]. The package declares a family of
tasks 512 elements deep; each member of this family includes .--
storage for one track, and entry points to initialize, read, or q
change the track information. The structure of the task insures
that a track can be initialized only once, and that it cannot be
changed while being read. Within a larger radar surveillance
program, the entries of these tasks would be called very fre-
quently. Such calls might, in fact, outnumber ordinary procedure
calls. It is difficult to imagine how the Nebula model of task-
ing could work for a program with so many tasks and such frequent L 1
task calls.
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The radar track management package described in [IlI is simpli-
fied for purposes of illustration. However, it is not a "con-
trived" example, unlikely to arise in "real world" applications.
It would admittedly be possible to write a track management pack-
age which did not employ such extensive use of tasking, and which

-. would be more suitable for implementation on Nebula under its
current tasking model. However, the package as described makes
an entirely reasonable use of tasking. It was included in the
SIGPLAN document specifically to illustrate the software en-
gineering advantages of this feature of Ada. It typifies an ap-
proach to programming which has been used successfully and to 6.i

considerable advantage in languages like Simula. It is unreason-
able to argue, then, that Nebula should not be required to sup-
port this type of usage.

7
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3.0 Other Issues

3.1 Call Mechanism Performance

During an industry review of t.ie Nebula architecture conducted
under the auspices of the Electronics Industries Association, the
procedure call mechanism was the focus of much criticism and com-
ment. The bulk of reviewers' responses could be divided more or - -

less equally into two categories. Some reviewers felt that the
mechanism did too much in hardware, precluding software optimiza-
tion of register usage and calling sequences. Others felt that
it did too little by failing to allocate a data frame for the
called procedure.

Regarding the first point, there certainly are implementation ap-
proaches which might give poorer performance for the hardware
based call mechanism of the standard than for an optimized
software mechanism. An example would be one which simply main-
tained users' registers and other context information internally
during procedure execution, waiting until the next procedure call
to store it in the context region of memory. This approach would
generate essentially the same memory references as a simple-
minded software mechanism; conceivably, a smarter software
mechanism which allowed less than the full set of registers used
by a procedure to be saved would give better performance. Howev-
er, there are other implementation approaches which would give
much better performance than any software based mechanism.

An example of an implementation giving good performance in the
call mechanism is one using parallel write-through from the con-
text cache to the context area of memory. In that case, no time
is required to save the caller's context when making a procedure
call. Alternatively, a mechanism able to maintain multiple pro-
cedure contexts within its cache would also perform well. The
point is that the architecture does not prescribe the implementa-
tion and is not intended to. Criticism based on performance con-
siderations for one particular type of implementation is there-
fore largely irrelevant. The definition of the call mechanism
allows designers to select implementations which do give good
performance, and in that respect, at least, it makes good archi-
tectural sense.

The last statement above is not meant to imply that there are no
problems with the Nebula call mechanism. They relate to its usa-

* bility for the implementation of the Ada language, however, rath-
er than to the performance of the basic mechanism itself. The
issue of memory management and the call mechanism's dependence on
an open stack was discussed in section 2 above. An additional
issue concerns the method in which parameters are passed and
referenced.

II-2.5 !'][!:

- . '. * . '- ~ ** %'. j



* 3.2 Parameter Passing and Referencing

* Problems with the parameter passing and referencing provisions of
Nebula's call mechanism exist, but appear less serious than those
associated with memory management for tasking. As discussed in
[7], the software workarounds required to match the Ada semantics
are not unreasonably expensive.

The specific issue is that Ada requires scaler parameters to be,
passed by value, so that programs will be more likely to behave
consistently under different multitasking implementations. Ex-
cept for literals, however, Nebula passes parameters by refer-
ence. Ada also requires that parameters of an outer procedure be
visible to procedures nested within it. Nebula provides no
method to reference parameters outside of the procedure to which
they belong.

To achieve parameter passage by value with Nebula, either the
calling procedure must copy scaler parameters to local tem-
poraries, passing descriptors of the temporaries as the actual
call parameters, or the called procedure must copy parameters to
local temporaries on entry, referencing the temporaries within
its body rather than the parameters themselves. The former ap-
proach will often involve no added overhead to the call, since it
is the necessary method to handle output parameters when the
value of the parameter within the calling program is constrained.
However, it does not solve the problem of uplevel referencing of
parameters, for which the latter approach is required.

3.3 Tasking Operations

An item that was identified as a significant unknown during the
EIA review of the Nebula architecture was its suitability for the
implementation of various Ada task management operations. For
instance, would adequate performance of Ada programs require spe-
cial architectural features to support parameter passing on task
calls, selective wait statements, or task exit monitors?

A significant conclusion of the present study is that, with one
major qualification, such features do not appear to be needed.
It may ultimately prove desirable to extend the Nebula instruc-
tion set with operations tailored to the management of tasks, but
the nature of the operations required is compatible with imple-
mentation under the current OPEX facility. No underlying changes
to the basic architecture appear to be required.

The qualification is that, to achieve the type of data sharingand communication between tasks required by the language, Ada
tasks must use commonly mapped data spaces. It is not feasible
to use separate data spaces for each task and depend on operating
system software to manipulate map entries on a case by case basis
when sharing is required. This, in turn, means that data frames
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cannot be allocated from a simple stack within a task's own
space. A more complex algorithm, such as that of Appendix A,
must be used to allocate frames from a space that is commonly
mapped for all tasks. If the allocation is performed in
software, there will be a significant increase in procedure call

*overhead. With careful implementation of the algorithms of Ap-
pendix A, the increase may be considered tolerable; however, it
argues in favor of the changes discussed in section 5.3.1 below.

3.4 Error Detection and Diagnosis

Another issue raised in the EIA review is that the architecture's
capabilities for trapping software errors, while acceptable by
the standards of most current commercial architectures, are weak
for an architecture of Nebula's generation and intended lifespan.The*Intel 432, for example, provides run time error detection

* capabilities that dramatically eclipse those of the Nebula archi-
4 tecture. -

There is a definite run time penalty associated with the type of
architecture used in the 432, and it may be appropriate for Nebu-
la to avoid such an approach. Nevertheless, there are a number
of features that could enhance Nebula's capabilities for trapping
software errors without impacting its run time performance. In
some cases, execution performance would probably be enhanced by
eliminating the need for more expensive run time checks imple-
mented in the software. This is a significant issue, since the
definition of Ada requires a high level of error checking.
Checks which cannot be performed through static analysis of
source code and are not performed by the hardware must be per-
formed through run time checks in software.

One of the specific issues in this category is that, under the
Nebula architecture, all procedures of a task have common access
privilages throughout the addressing space of the task. This
does not correspond to the scoping rules of the Ada language. It
was pointed out in [4] that display based addressing, with
display entries including the size of the associated data frame,
would allow a much closer mapping of addressing capabilities to
the semantics of the Ada language. It would also simplify com-
piler design and lead to performance enhancements in generated
code. Unfortunately, it is not compatible with the current stan-
dard, even as an upward extension. It is probably a more drastic
revision than can be justified by the benefits it would provide.
For that reason, it is not among the recommendations included in
this report.
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4.

4.0 Living with the Current Standard

4.1 Non-Solutions

One "solution" to the problem of supporting extensive multitask-
ing on the Nebula architecture in its current form is simply not
to do it. Projects could specify the use of a language other
than Ada, or of a dialect of Ada that restricts multitasking.

Failure to support full Ada will probably not be acceptable to
most program offices. It does, however, have the virtue that it
makes clear what is and isn't being done. This is preferable--at
least technically, if not politically--to another "solution" that
would have the same practical effect, but would conceal it under
a veneer of superficial support for the full language.

U N

There are various "brute force" methods of supporting multitask-
ing that are extremely inefficient if tasking is used extensive-
ly, but perform well if it isn't. An obvious example would be
the use of tasks or processes at the operating system level--

* i.e., as recognized and managed by conventional multiprogramming
operating systems--to model individual tasks within an Ada pro-
gram. Implicit in this approach is the use of separate virtual
address spaces for the individual tasks, and special operating
system calls to permit access to shared variables.

It is easy for implementors of such approaches to shrug off poor
tasking performance as the penalty for use of "inherently expen-
sive" language features. They can claim that the implementation
is optimized for the most commonly encountered programming
style--i.e., ordinary procedure calls. Programmers are usually
quick to learn which features of a particular implementation are
efficient and which are expensive. They adjust their coding Irl
technique accordingly, so the claim of optimization for common
practice quickly becomes a "self fulfilling prophecy".

It is important that program offices recognize that there is no
technical merit to any claims that Ada tasking is impossible to
implement efficiently on conventional architectures. Ada tasking
is not fundamentally different from that found in languages such
as Simula, and efficient implementations for these languages do
exist. There are, of course, degrees of efficiency, and the ar-
chitecture on which a language is implemented can significantly
impact its ultimate efficiency. The problem is more acute when
an architecture introduces mechanisms, such as the current Nebula
call mechanism, based on models that are incompatible with the
requirements of a multitasking language. Nonetheless, "reason-
able" implementations of tasking remain possible.

11-2.8
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4.2 Using the Current Call Mechanism

" Assuming that the non-solutions described above have been ruled
out, then Ada implementors constrained to work with Nebula in its
current form face an "interesting" challenge [*]. They must
overcome or circumvent the memory management limitations of the
current call mechanism with respect to tasking, without causing
excessive overhead for programs not using tasking.

The implementation approach which most nearly conforms to the
current Nebula model would rely on the memory management features
of the architecture to permit dynamic growth in the context re-
gion associated with each task. The memory management scheme is
illustrated in figure 4.2-1. It specifies a set of map regis-
ters, with each register containing the start address for a seg-
ment of virtual address space, an offset for translation to
corresponding physical addresses within the segment, and a seg-
ment access code. No end address for the segment is required,
since each segment is assumed bounded by the start address
above--or by the largest virtual address in the case of the last
map entry.

Given the memory mapping capabilities, it is possible to initial-
ly allocate only a modest amount of physical context memory for
each task. The map entry for the region initially allocated is
preceded by several entries describing segments of virtual ad-
dress space marked as inaccessible--no physical memory allocated.
If a task overflows its initially allocated context space, it
will attempt to access one of the inaccessible regions, generat-
ing a memory management trap. At that point, the operating sys-
tem can allocate a physical memory block to the segment generat-
ing the trap. The task can then be resumed with the expanded
context address space. The memory map patches together separate
regions of physical memory into a contiguous region of virtual
address space.

To limit the number of memory faults for tasks with deep recur-
sion, the size of regions allocated should probably double with
each successive fault. To avoid depleting the pool of physical
memory available for allocation as context memory, vacated seg-
ments must be reclaimed by the operating system on each task
switch.

The above scheme is usable for the hardware context stack, be-
cause there is no need to share such memory between tasks. It is
not practical to use it for a data stack, due to the complexities
introduced by sharing. Allocation of data frames, in the general
case, must depend on some type of software mechanism more complex
than a stack, with allocations made from a pool that is common to

[*] "May you live in interesting times" is a Chinese curse not
usually appreciated by westerners, unless they have been software
project managers.
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MAP SIZE

SEGMENT

MAP POINTER ECPTR

REGI STERS

SEGMENT

DESCRIPTORS

* FIGURE 4.2-1a: MAP DATA STRUCTURE

28 29 30 31

PHYSICAL ADDRESS of MAP

RESERVED

RELOCATE IF SET
PROTECT IF SET

FIGURE 4.2-ib: MEMORY MAP POINTER REGISTERS

*0 1 28 29 31

PRIVILEDGE PROTECTION KEY

32 60 61 63

RELOCTION AMOUT_0 _____0

RESERV ED"

Figure 4.2-ic: Map Entry Format
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all tasks.

The main drawback of the approach just described is that it makes
task switches relatively expensive. It also makes address trans-
lation mandatory, even for embedded software applications which
otherwise have no need for it. This defeats a provision of the
architecture which would allow such applications to avoid un-
necessary overhead by running with address translation disabled.

4.3 Bypassing the Call Mechanism

As an alternative to the approach of the preceding section, it is
possible to bypass Nebula's procedure call mechanism. The in-
struction set includes more primitive call and return instruc-
tions called "jump to subroutine" (JSR), and "return from subrou-
tine" (RSR). These instructions do not cause the allocation or
freeing of a hardware context frame, and can be used as the basis
for a "conventional" software implementation of tasking.

With a software based call mechanism, procedure activation
records are allocated following an appropriate algorithm, and
call parameters are passed by storing them in a reserved portion
of the activation record. Since a new context frame is not being
created, registers are inherited across the procedure call and..
may need to be explicitly saved.

Activation records for a given task are linked through a dynamic
link field in the activation record; task switches are accom-
plished by saving state information for the current task and
loading it for the new task. State information includes, in the
general case, working registers, program counter, PSW, and frame
pointer. However, if the task switch is the result of executing
an Ada task call or accept statement, working registers and PSW
can be ignored. The compiler simply observes the convention that
working registers and condition codes are not preserved across
task calls, and generates code accordingly. This minimizes task
switch time for the most common type of switching.4[

The above approach reflects the way multitasking is typically im-
plemented on conventional architectures for languages like Simula
and Modula. It would seem to be safe for Nebula as well. Howev-
er, even this approach encounters certain complexities. Since
use of the formal call mechanism is implicit in the extended op-
code (OPEX) and in the executive service call (SVC) facilities,
then some care is needed in how tasks are allowed to use these
facilities. If an internal context switch can occur as a result
of an SVC or as a result of an interrupt during execution of a
software implemented OPEX, then the kernel software must include
some provision for managing the open context frame as part of the
internal context switch. Details of this process need to be
worked out, although the process itself would not appear to be
critical to the run time performance of the implementation.
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4.4 Compiler Issues

An alternative approach that will be attractive to many implemen-
tors will be to devise compiler optimization strategies which,
coupled with appropriate run time storage management strategies,
could salvage the current call mechanism. For instance, while it
is not possible to allocate sufficient memory for a separate
stack to each of 500 or more simultaneously active tasks, it is
certainly possible to do so for half a dozen or so. If the bulk
of the tasks, such as those associated with active data struc-
tures, can be transformed into "monitors", as described in [8],
then a half dozen or so stack spaces may be sufficient to imple-
ment the program in question.

Even if there are too many tasks remaining after "monitorizing"
to allow assignment of a separate stack space to each, it might
be possible to treat a limited number of stack spaces as

2 resources to be dynamically shared among the active tasks. Inac-
tive context stacks could be stored in dynamic memory, packed to-
gether. To execute, a task's context stack would first have to
be copied into a region of open stack space. But because there
would be a number of open stack spaces available, the most active
tasks would normally retain their stack space between periods. of
execution, and most context switches could occur without the need
for stack copying.

It is difficult to estimate how far the process of "optimizing
away" tasks can actually be carried. In principle, it should be
possible to write a "program sequentializer" that would transform
any program expressed as a set of parallel processes into an
equivalent process involving a single thread of control. This
involves the same kind of tradeoffs that are involved in compiled
vs. interpreted code. More work is done at compile time to save
overhead at run time, but at the cost of considerably greater
software complexity overall. There also tends to be a loss of
flexibility in making changes and greater difficulty in program
debugging.

The problem with depending on compiler optimization schemes and
clever run time storage management strategies for implementation
of multitasking on a single processor is that it represents
largely unexplored software territory, and hence must be viewed
as high risk. The algorithms are bound to be complex, and there
is a great deal of room for hidden bugs, even if the theory of
the algorithms is soundly developed. It is an area that deserves
considerably more study, but in general it seems a lot of work to
go to for a result that could more readily achieved by appropri-
ate design of the target architecture.

I-2.12
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5.0 Options Involving Changes to the Standard

5.1 Fully Compatible Changes

There are three levels of potential changes to the architecture
which might be considered. At the level of minimal changes would
be changes which permit both upward and downward software compa-
tability with respect to the current version of the standard.
That is, any changes would be limited to new instructions whose " -"
effects could be simulated through software using the OPEX
mechanism on older implementations of the standard. Properly
speaking, these do not constitute actual architectural changes,

Z. since the current standard explicitly allows for such extensions.

Unfortunately, the OPEX mechanism is of little use in addressing
the most serious Ada implementation issues. It is firmly rooted
in the current CALL mechanism, and it is precisely that mechanism
that causes trouble for Ada implementations. For instance, sup-

*pose an alternate form of the CALL instruction, more suited to
the Ada tasking model, were desired. Call it DCALL, for "dynamic

r. call". The purpose of the instruction would be to allow a task
to execute from a context frame which had been "boxed in" on the
stack by the frames of other tasks. DCALL would detect the
boxed-in condition in some manner--say by comparison of the
current context pointer to a global stacktop pointer--and obtain
storage for the new context frame by locating a new free block.

The DCALL instruction could be implemented in microcode with no
great trouble, but it cannot be simulated in software through the
OPEX mechanism. The problem is that a software implemented OPEX
looks just like a conventional procedure call. In particular, it
allocates a new context frame for use by the OPEX software, and
that frame is allocated according to the Nebula model of a
guaranteed open stack. If the OPEX is executed by a task with a
boxed-in context frame, the frame allocated for the OPEX would

* overstore the frame of another active task.

5.2 Upward Compatible Changes

This leads us to the second level of changes--those preserving
upward compatibility with the current standard, but precluding
downward compatibility. This set can be arbitrarily large, pro-
vided that one of the changes is the incorporation of a hardware

4 "compatibility mode flag" to control interpretation of instruc-
tions. This is a legitimate approach, and has been used in DEC's
VAX computers to allow compatibility with the architecturallydis-
similar PDP-11 family. However, for our purposes here, we will
consider only changes which do not require a compatibility mode
to achieve upward compatibility.

11-2.13
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5.2.1 Call Instruction

The upward compatible changes are based on a slightly modified
call mechanism that incorporates a cactus stack algorithm for
context frame allocation in place of the current simple stack
scheme. The algorithm used is essentially the same as that
described in Appendix A. It results in a transparently modified
CALL instruction that allows tasks to execute from context frames
that are "boxed in" by frames from other tasks. The instruction
detects the boxed-in condition, and obtains storage for the new
context frame by locating a new free block.

A boxed-in stack is detected by associating with each logical
task, at the time it is readied for execution, a "current working
block". The current working block is characterized by a block
limit address, which is maintained in the CPU and used to deter-
mine when there is sufficient space for allocation of a new con-
text frame. This is described in more detail below.

5.2.2 Return Instruction

The modified CALL instruction requires a modified RET instruction
to make it usable. The modification is required in order to al-
low the RET instruction to execute properly when returning to a
procedure whose frame was boxed in. In that case, the RET in-
str-ction cannot get to the caller's context frame simply by in-
crementing the context pointer by the size of the current context
frame. A dynamic link stored in the current context frame is re-
quired.

The dynamic link need not be stored on every CALL or used on
every RET. It is needed only when the CALL skips over a blocked
region of the stack. There are two bits in the PSW currently
reserved for "implementation dependent usage". One of these can
be used to signal that a dynamic return is required and thereby
control the operation of the RET instruction.

5.2.3 Internal Context Switching

Another concomitant change that is needed for the modified call
mechanism is an instruction to perform internal task context
switching. "Internal" means that the switch occurs within the
framework of what would currently be considered a single Nebula
task. The context pointer register is changed, establishing the
general registers, parameters, and PSW for a new logical task,
but leaving the memory map unaffected.

The internal context switch instruction must interface with
memory management firmware to preserve the integrity of memory
management data structures. The firmware routines it must invoke

.: correspond to the CLOSE TASK STORE and OPEN TASKSTORE of appen-
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dix A. The context switch instruction takes four distinct
operands. The first two receive the context pointer and the free
list pointer for the currently executing task. The second two
furnish corresponding values for the task to which execution is
being switched. The second and fourth operands may be the same,
but need not be. If they are not the same, then the storage
pools used for context memory by the two tasks are isolated from
each other. This means that it is possible to allocate a dedi-
cated block of memory for a task that must execute with minimum
interference from other tasks, without resorting to creation of a
separate Nebula task.

5.2.4 Hardware/Software Interface

The algorithms described in appendix A use a "boundary tag"
method for management of the dynamic memory pool. This is con-
venient for hardware based memory management, in that the state
information needed to manage the memory pool is contained in con-
trol words within the pool. They are thus equally accessible to
call mechanism firmware and operating system software. No spe-
cial maps need be maintained in memory accessible only to the
hardware. Aside from the current context pointer itself, the
only information needed for firmware to manage the pool is a
pointer to the upper or lower bound of the current working block 5

The limited context intormation required for hardware management
of the memory pool simplifies the interface between operating
system software, which must set up the pools initially and modify
them on occasion, and the firmware, which manages the pools dur-
ing program execution. Although allowing software access to
structures that are manipulated by firmware might initially ap-
pear dangerous, the control words are protected by the memory ac-
cess codes of Nebula's memory mapping system. They would reside

. within memory segments marked as "context only", and could not be
corrupted by unprivileged software.

5.2.5 Hardware Implications

There is not much question that a hardware based capability for
cactus stack management of context frames would make multitasking
more efficient. A central question in evaluating the proposed
changes, however, is the degree to which the addition of this ca-
pability impacts hardware complexity and the execution speed of
normal procedure calls and returns.

With reasonable hardware support, the proposed changes need not

[*] if the stack grows upward, then the pointer is to the upper
bound. If it grows downward, then the pointer is to the lower
bound.
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impact execution speed at all. Nor is their impact on hardware
complexity particularly significant. A register containing the
limit address of the current working block is required, and a
stackpointer register separate from the context pointer register
is convenient. The limit register is used to test, after deter-
mining the size of a new context frame, whether there is suffi-
cient room for the frame within the current working block. If
there is, the action taken is identical to that taken under the
current call mechanism. Extra cost is incurred only if the test
fails, which corresponds to what would be a memory fault with the
current call mechanism.

If needed for highest performance, the test for block overflow
can be made to consume zero time in the normal case. The test
can be initiated in parallel with the micro instruction sequence
appropriate to passing the test. Success of the test would do
nothing, while failure would generate an overriding branch in the
micrologic. The microcode accessed by the overriding branch _. ._
might have to undo actions initiated by the default code, but its
task in this respect would likely be simpler than it would be
under the current mechanism. In the latter case, the overflow is
not detected until the firmware attempts to access inaccessible
memory, which may be much later in the micro sequence.

Masking additional execution time for the return instruction is
even easier than it is for the call instruction. The action ap-. -

propriate on a return instruction is completely determined by the
combination of the dynamic return bit in the PSW and a "history
bit" indicating the prior state of the dynamic return bit. These ii
bits can be used to gate or modify the initial control store ad-
dress for the return instruction. If a normal return is ap-propriate, it is executed immediately with no overhead for test- g
ing or unnecessary actions.

5.3 Incompatible Changes

Given the political complications of changing standards and the.%
inertia that published standards quickly acquire, it is much more -
comfortable to propose upward compatible changes than to try to
justify incompatible ones. In the case of MIL-STD 1862, however,
there is little technical reason to limit consideration of
changes to those that are upward compatible. Hardware under
development is now limited to prototype implementations of the
standard, and will remain so for some time. There is no signifi-
cant accumulation of software developed for the current standard
that must be protected. Provided that proposed changes are not so
extensive as to invalidate experience gained in implementation of
prototypes, they deserve consideration on their technical merits.

Although the upward compatible changes described in section 5.2
above remove the obstructions to use of the Nebula call mechanism
for implementing Ada tasking, they fall short of providing a
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really efficient call mechanism. In particular, they leave the
allocation of procedure data frames to prologue software. This
deficiency, not serious in the absence of tasking when a simple
stack policy of storage management can be used, becomes more
serious in the presence of tasking.

" 5.3.1 Hardware Allocation of Data Frames

* If "cactus stack" allocation of context frames is introduced into
the hardware to salvage the basic call mechanism, it would seem
reasonable to use it for allocation of the data frames as well.
The procedure descriptor, which currently gives the number of
parameters and the maximum number of registers used by the pro-
cedure, can be amended to include also the size of the basic data
frame. This allows the call instruction microcode to allocate
the data frame automatically. It also allows call parameters to
be stored at the base of the data frame rather than in the con-
text frame, solving the uplevel parameter referencing problem.

Using hardware based memory management for data frame allocation
causes certain complexities that do not arise when it is confined
to allocation of hardware context frames. The complications are
not serious, in that they have various reasonable solutions, but
they do require that solutions be adopted. For example, some
mechanism must be provided to return the frame pointer allocated
by the call instruction microcode for use by subsequent compiler
generated code. One obvious alternative is to provide the call
instruction with an additional operand specifying where the frame

* pointer is to be stored. This would normally be a register, and
parameters would be referenced as local data using the byte in-
dexed mode. An alternative to this, suggested by Jim Elkins of I .

* Digicomp Research, Inc., is to hold the frame pointer in an
internal CPU register until it is accessed by a specific new
instruction--"get frame pointer". This is less efficient than
the former method, but has the advantage of not requiring changes
in the operands of the OPEX and SVC instructions. These also use

* the call mechanism.

An additional complication has to do with protection of the
memory management block control words from user software. This
is not a problem when the control words reside in segments used
for context memory only, but it is a potentially serious problem
when they reside in segments used for general access by user
software. There would appear to be only two viable solutions to
this problem. One is simply to use a memory management scheme
other than the boundary tag method, in which the control struc-
tures could reside in protected memory separate from the memory
whose allocation they control. There are such algorithms, but
none of them appear to be as simple and well suited for the type
of usage required as the boundary tag method. A better alterna-
tive is discussed below.
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_ .*_.. -_ . * .... ....-... . . .-. ..



AD-Aii5i 841 NEBULA INSTRUCTION SET ARCHITECTURE (ISA) EVALUATION 2/4
(U) DIGICOMP RESEARCH CORP ITHACA NV R D ARNOLD ET AL-
SEP 84 RADC-TR-84-i98 F30602-88-C-0279

UNCLASSIFIED F/6 9/2 N

mhhmhhhhhhhilI
I llfflffllflfllfllf
I lfflffllfflf..lf
llllllllllhhl
llllllllllImhuIfllllllllllli



;11

- IU

IIi owI,

1IL2t5 _1111.

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANOARDS-1963-A

* SS V U V U w w qW'0. .T J t
• . ... .- .... . . . §. 1 ii .. ..o . ii .• .. , .. ~ : • h it ..i,.b ° i iiu liio



5.3.2 Write Protect Word and "Uninitialize"

5.3.2.1 System Usage

A more attractive way to protect dynamic memory control struc-
tures would be to provide the capability to write protect indivi-
dual memory words regardless of the access code of the segment in
which they reside. This not only solves the particular problem
of protection for dynamic memory control words, but it provides a

* very useful mechanism of quite general value. It simplifies the
development of software debugging tools, and allows them to have
capabilities that simply cannot otherwise be implemented. It
aids detection and diagnosis of errors in operational software,
and maps well onto Ada's concept of private variables.

A similar and complementary capability to write protect by word
is hardware detection of uninitialized variable references

* through the use of an "uninitialize" instruction. This is a par-
ticularly useful capability, in that it detects a common and in-
sidious type of software error against which there is no other
satisfactory method of protection.

To be most generally useful, the ability to write protect and to
set the uninitialized state on a memory variable should be avail-
able to user software. At the same time, the capability must be
restricted so that user software cannot alter the status of words
it does not logically "own". With hardware allocation of data
frames, there is a reasonably straightforward way to do this.
The hardware knows the location and size of the current
procedure's data frame, and can restrict alteration of protection
and initialization bits in the user mode to the appropriate seg-
ment of memory. The assumption here is that a procedure or func-
tion "owns" exactly that memory located within its local data
frame, which seems reasonably close to the intent of Ada's seman-
tics.

There is one qualification on the last statement above. Ada de- .
*fines objects of access variables to be allocated from heap

storage independent of a subprogram's local data frame. To allow
user software to write protect or set uninitialized such objects, *

it might be desirable to provide a new segment access code that
*, would allow unrestricted alteration of word write protect and in-

itialization status. Several reserved access codes are currently
4 available, so such a function is feasible. As a refinement, the

combination of "uninitialized, write protected" on a word could
* be interpreted to prohibit user alteration of its status as well

as normal read/write access. This would allow embedding of
hardware or operating system protected variables within a segment
with otherwise unrestricted user permissions, which is useful for
implementing a secure, general purpose data heap.
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5.3.2.2 Hardware Impact

Detection of uninitialized variable references is relatively easy
to implement. It amounts, mainly, to an expansion of machine
word size by one bit. When a word is written, the "uninitial-
ized" bit is cleared. When it is read, the bit is tested, with a
trap generated if the bit is not cleared. There is a special in-
struction which sets the bit in a specified word or block of
words.

Write protection by word, on the other hand, is sometimes con-
sidered an expensive feature to implement in current generation
machines. If the most straightforward implementation approach is
followed-- i.e., reading the word and testing its write protect
bit in the CPU prior to writing--memory bandwidth on write opera-
tions is effectively halved [*]. However, there are reasonable
alternative approaches which are well suited to current technolo-
gies.

Memories are usually organized as independent banks of storage
with buffered access to a common bus. By adding a minimal degree
of intelligence to the memory to bus interface, it is possible to
convert a write operation locally to a read of the appropriate
write protect bit, meanwhile latching the write data and address.
The status of the write protect bit is returned immediately to
the CPU, which then proceeds with its next operation. The
latched write data and address are held within the memory bank
until there is an idle cycle in which it can be stored, or until
the next write to the same oank. If the latter occurs first, the
memory bank must signal a hold while it stores the previously
latched data. However, with interleaved addressing--low order
bits select bank--there is a high probability of a read or write
operation to another bank prior to the next write to the original
bank. This gives the original bank the opportunity to store the
latched data, making delays rare.

With a 32 bit machine, the 6% increase in memory size which the
bits for write protection and detection of uninitialized variable
references represent is hardly a major consideration. The cost
of memory chips is a small part of total hardware cost, and the
cost of hardware is a small part of total system costs. It is
now routinely eclipsed by the cost of software, and any feature
which helps to reduce the cost of software development and to .

enhance reliability without impacting performance is probably
* justified.

Introduction of write protect and uninitialized variable bits

does raise some design questions which must be answered. What
should happen, for instance, when a single byte within an unini-

[*] Ironically, on older core memory machines, this approach cost

nothing, since a read before write was essential to the operation
of the memory.
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"- tialized word is stored? The obvious answer, that it causes the
status of the word to change to initialized, lacks something in
aesthetic appeal. It seems to conflict with the notion that
bytes are individually accessible. Yet extending initialization
status protection to individual bytes seems like unnecessary
overkill. .

A more substantial question is how initialization and write pro-
tect bits should be handled during I/O. For byte stream I/O to
and from serial devices, it is probably reasonable to ignore the
bits. The convention would be that anything input in this manner
would be considered as initialized and not write protected, ex-
cept as provided by the access code for the segment into which it
was read. The real problem is with disk I/O of program and data
images. If automatic swapping is envisioned as an adjunct to
virtual memory, it would seem essential to use a word oriented
disk device that included storage for the write protect and ini-
tialization status bits. This is certainly possible, but it is
rather unconventional.

Despite these complications, it is the author's conviction that
word oriented write protection and initialization status detec-
tion would be of major value in reducing software life cycle
costs. This is based on extended experience on several large
aerospace software projects, covering design, development and
maintenance phases. The benefit that could be expected is almost
certainly sufficient to justify inclusion of these capabilities
in any modern architecture. claiming to be oriented toward reduc-
tion of software costs.

5.3.3 A Further Note on Compatibility

Strictly speaking, hardware allocation of data frames can be
achieved without sacrificing upward compatibility. It is merely
necessary to make the new call a separate instruction, rather
than a modification of the existing instruction. However, a new
return instruction would also be required to complement the call.

* The Nebula vectored operations (interrupts, traps, service calls,
and unimplemented op codes) couldn't use hardware allocation of
data frames if upward compatibility wre preserved, since there
is no convenient way to distinguish new forms of these operations
from the existing forms. For these reasons, an outright change
in the call mechanism, rather than introduction of new instruc-
tions, is probably preferable. It would give a cleaner, more
consistent architecture. As noted in section 5.2.3 above, the
new forms can be implemented with no execution time penalties
even when tasking is not used. In the absence of any significant
body of old software to protect, there is no technical reason to
retain the older forms.
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Appendix A: Memory Allocation for Tasking Environments

A.0 Allocation Algorithm

The algorithm used to allocate activation records is an important
feature in any approach used to the management of environments in
the presence of tasking. The algorithm must give performance
reasonably close to that of a simple stack algorithm for the im-
portant subclass of Ada programs which do not employ tasking. At
the same time, it must efficiently handle multitasking and the
allocation of activation records whose lifetimes are not always L
conveniently nested.

Dynamic allocation of activation records on each procedure call
is an obvious solution to the problem of non-nested lifetimes.
However, it is an inherently expensive solution, and imposes a
significant execution penalty on programs that do not require its
generality. Even with multitasking, dynamic allocation is more
ganeral than actually required, since procedure activations
remain "last in, first out" within any given task. A better pol-
icy is to use stack allocation within any given task as long as
possible, with provision to detect overflow from the current re-
gion of memory and switch to new region when necessary. This is
similar to the approach described, for instance, in [6].

A.1 Simple Frame Management

Figures A-1 and A-3 are Ada packages describing a "stack orient-
ed" allocation algorithm suitable for tasking applications. Fig-
ure A-1 describes the "cactus stack" frame management algorithm
proper. Figure A-3 describes an associated dynamic memory
management algorithm which is invoked by the frame management
routines when departures from simple stack management are re-
quired. The packages presented are intended only to illustrate
the algorithms; they would not be visible in an actual Ada pro-
gram. They would be implemented in assembly language and used by
compiler code generator in subprogram prologue and epilogue code
sequences.

In essence, the frame management algorithm works as follows:

1. When execution switches to a new task, a large block
of memory is obtained from the memory management sys-
tem. A minimum size is requested, but no maximum is
set; the memory manager simply returns whatever is
currently available, so long as it is larger than the
specified minimum.

2. The block returned by the memory manager is used as a
stack by the task and its procedures until either (a)
the task terminates, (b) the stack overflows, or (c)
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package FRAME MANAGER is
procedure GET FRAME (SIZE:. in INTEGER);
procedure POPFRAME 0;

end FRAME MANAGER;

package body FRAME MANAGER is
with UNCHECKED CONVERSION;
with MEMORY MANAGER; -- GET BLOCK, CHANGE BLOCK, etc.

with LOW LEVEL DEFS; -- type ADDRESS, WORDSIZE defined

type FRAMEHDR is
record

SIZE: INTEGER; -- size of associated frame
LINK: ADDRESS; -- ptr to caller's frame

end record;

FH_SIZE: constant : 2 * WORDSIZE;-

type FH PTR is access FRAMEHDR;
function FH PTR is new

UNCHECKEDCONVERSION (ADDRESS, FH PTR);

STACKPTR, LIMIT: ADDRESS; -- define state of current block
CURRENT FRAME: ADDRESS -- used by generated code

procedure GET FRAME (SIZE: in INTEGER) is
begin

if STACKPTR + SIZE > LIMIT then -- block overflow

GET BLOCK (SIZE + FHSIZE, LIMIT, STACKPTR);
end if;
FH PTR(STACKPTR).SIZE : SIZE;
FH PTR(STACKPTR).LINK : CURRENTFRAME;
CURRENT FRAME :- STACKPTR;
STACKPTR := STACKPTR + SIZE + FHSIZE;

end GETFRAME;

procedure POP-FRAME () is
begin

TOP: ADDRESS;

TOP :- CURRENTFRAME + FHPTR(CURRENTFRAME).SIZE + FH SIZE;
if TOP /= STACKPTR then -- change current block

CHANGEBLOCK (LIMIT, TOP);

end if;
STACKPTR : CURRENT FRAME;
CURRENT FRAME :FH-PTR(CURRENTFRAME).LINK;

end POPFRAME;

end FRAME MANAGER;

Figure A-1
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package FRAME MANAGER is
with LOWLEVELDEFS; -- ADDRESS, etc. definedprocedure GET FRAME (SIZE: in INTEGER);

function EXPAND FR (INC: in INTEGER) return ADDRESS;
procedure SHRINK FR (INC: in INTEGER);
procedure POP FRAME (;

end FRAMEMANAGER.

package body FRAME MANAGER is
with UNCHECKED CONVERSION;
with MEMORY_MAGER; -- GETBLOCK, CHANGEBLOCK, etc

type FRAME HDR is
record

SIZE: INTEGER; -- size of associated frame
LINK: ADDRESS; -- ptr to caller's frame
EXTEN: ADDRESS; -- link to non-contiguous extension

end record;

F9_SIZE: constant := 3 * WORDSIZE;

type FH PTR is access FRAMEHDR;
function FH PTR is new -.

UNCHECKEDCONVERSION (ADDRESS, FHPTR);

STACKPTR, LIMIT: ADDRESS; -- define state of current block
CURRENT FRAME: ADDRESS -- used by generated code
CURRENT-EXTEN: ADDRESS -- normally = CURRENT FRAME

procedure GET FRAME (SIZE: in INTEGER) is
begin

NEW TOP: ADDRESS;

NEWTOP := STACKPTR + SIZE + FHSIZE;
if NEW TOP > LIMIT then -- block overflow

GET BLOCK (SIZE, LIMIT, STACKPTR);
end if;
FHPTR(STACKPTR).SIZE : SIZE;
FRPTR(STACKPTR) .LINK .= CURRENTFRAME;
FH PTR(STACKPTR).EXTEN :- 0;
CURRENT FRAME : STACKPTR;
CURRENTEXTEN := STACKPTR;
STACKPTR :- NEWTOP;

end GETFRAME;

Figure A-2.1 .. -
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procedure EXPAND FR (INC: in INTEGER) is
begin

NEW-TOP: ADDRESS;

NEW TOP := STACKPTR + INC;
if NEW TOP > LIMIT then -- block overflow

GET BLOCK (INC + FHSIZE, LIMIT, STACKPTR);
FH PrR(STACKPTR).SIT.E INC;
FH-PTR(STACKPTR) .LINK CURRENTEXTEN;
FH PTR(STACKPTR).EXTEN :0;
FH PTR (CURRENTEXTEN) .EXTEN :=STACKPTR;
CURRENTEXTEN := STACKPTR;
STACKPTR := STACKPTR + INC + FRSIZE;
return CURRENTEXTEN + FH SIZE;

else f- fs in current block
TOP: ADDRESS;

TOP := CURRENT EXTEN + FRPTR(CURRENTEXTEN).SIZE + FR SIZE;

if TOP /= STAC9PTR then -- reenteriing empty block
NEW TOP := NEWTOP + FHSIZE;
FRPTR(CURRENTEXTEN).EXTEN := S1ACKPTR;
FHPTR(STACKPTR).SIZE := INC;
FHPTR(STACKPTR).LINK :=CURRENT EXTEN;
FR PTR(STACKPTR).EXTEN :0;

CURRENTEXTEN := STACKPTR;
else

FHPTR(CURRENTEXTEN).SIZE
FHPTR(CURRENTEXTEN).SIZE + INC;

end if;
STACKPTR :NEWTOP;

end if;
end EXPAND FR;

Figure A-2.2
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procedure SHRINKFR (INC: in INTEGER) is
begin

TOP: ADDRESS;

TOP CURRENT EXTEN +

PH_PTR(CURRENT EXTEN).SIZE + PHSIZE;
if TOP /- STACKPTR then -- change current block

CHANGEBLOCK (LIMIT, TOP);
end if;
if INC >= FH_PTR(CURRENTEXTEN).SIZE then

STACPTR CURRNTXTEN -- vacating whole exten.

CURRENT EXTEN := FH PTR(CURRENT EXTEN).LINK;
if INC P H PTR(cuRRENTEXTEN).fIZE then

SHRINKFR (INC - PHPTR(CURRENTEXTEN). SIZE);
end if;

else -- reducing size only
* P~HPTR(CURRENT EXTEN).SIZE -

H PHPTR(CURRENTEXTEN).SIZE -INC;

STACKPTR :TOP - IN;
end if;

end SHRINKFR;

procedure POPFRAME ()is
begin

TOP: ADDRESS;

TOP := CURRENT EXTEN +
PH_-PTR(CURRENTEXTEN).SIZE + PHSIZE;

if TOP /- STACKPTR then -- change current block
CHANGEBLOCK (LIMIT, TOP);

end if;
wh ile CURRENTEXTEN 1=CURRENT FRAME loop

CURRENTEX TEN := PH PTR (CURRENTEXTEN). LINK;
TOP := CURRENT EXTEN +

PHPTR(CURRENT EXTEN).SIZE + PHSIZE;
CHANGEBLOCK (LIMIT, TOP);

end loop;
STACKPTR :CURRENT-FRAME;
CURRENT FRAME := RAME_PTR(CURRENTFRAME).LINK;
CURRENT EXTEN CURRENT FRAME; -.
while Fff PTR(CURRENTEXT!fN).EXTEN 1=0 loop

4CURRENT -EXTEN : H PTR(CURRENTFRAME) .EXTEN;
end loop;

end POPFRAME;

end FRAMEMANAGER;

Figure A-2.3
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execution switches to another task. In case (a), the
entire block is returned to the memory manager. In
case (b), a new block is requested from the memory
manager, and the frame for the call causing the over-
flow is allocated from the new block. The new block
is referred to as an overflow block. In case (c), the
portion of the block not in use by the current task is
returned to the memory manager prior to switching exe-
cution. -

3. During execution of a task, a procedure return maycause an overflow block to be vacated. For efficien-
cy, the overflow block is not immediately returned to
the memory manager. This avoids the need to reallo-
cate the block in case a new procedure call precedes
the next return. The global stacktop pointer is left
at the base of the vacated block; on a subsequent pro-
cedure exit, the inequality of the stacktop pointer
with the sum of the current frame pointer and current
frame size signals that the frame being released re-
sides outside the overflow block. This means that the
overflow block should be released to the memory
manager and the block containing the current frame be
made the new working block.

A.2 Frame Management with Extensions

The frame management algorithm of figure A-i is overly simple, in
that it does not provide for the handling of frame extensions.
These are useful in practice to accommodate variable sized struc-
tures which cannot be allocated in the basic frame. This is con-
siderably more efficient than the alternative of allocating such
structures dynamically from the general purpose data heap. Frame
extensions can also be used for temporary storage that is not
needed throughout the lifetime of an activation record, increas-
ing storage efficiency.

A frame management routine that provides for frame extensions is
0 illustrated in figure A-2. In addition to the entries GET FRAME

and POP FRAME of figure A-i, it provides the entries EXPAND FR
and SHRINK FR to respectively request a frame extension and-to
release a specified amount of memory from the top of the frame.

The frame extensions handled by the routine in figure A-2 are of . . -

two forns--contiguous and non-contiguous. A contiguous extension
is simply an additional block of storage contiguous with an ex-
isting frame or frame extension. The effect of allocating a con-
tiguous extension is simply to increase the value in the size
field of the associated frame or frame extension.

When there is insufficient room in the current working block to
allocate a contiguous extension of a requested size, a non-
contiguous extension must be allocated. An overflow block is

II-2.A6

L

L '



created, the requested extension is allocated from that block,
and a pointer to the extension is stored in the extension link
field of the preceding frame or frame extension. The format of a
non-contiguous extension is identical to that of a regular frame,
except that its link field is a back pointer to the frame or
frame extension to which it is attached, rather than to the
caller's frame. On a return from a procedure, all non-contiguous
frame extensions are released prior to releasing the basic frame
of the exiting procedure.

A.3 Dynamic Memory Management

A memory management policy that would appear to work well in sup-
port of the routines of figures A-1 and A-2 is a derivative of
Donald Knuth's "boundary tag method" (12]. An Ada package imple-
menting the policy is shown in figure A-3. The data structure on
which it is based is shown in figure A-4. The implementation as-
sumes byte addressing with four-byte words. Allocations are in
integral words, so the two low order bits of ti-e block size
specifier in the block control word are available. One of these
records the busy/free status of the block above the control word,
and the other the block below. Although the basic boundary tag
method assumes block size specifiers both above and below each
block, the upper block size specifier is needed only if the block
is free. It can therefore be allocated as the last word of the
block itself, limiting memory overhead for control words to one
word per block.

An important feature of the memory management algorithm illus-
trated is the method in which the block free list is maintained.
At the start of program execution, the free list will presumably
consist of a single block representing all the memory reserved
for allocation of activation records. As task switches cause
portions of this block to be broken off, the space begins to
fragment. However, the free list is maintained as a circular
list with a rotating head. Released blocks are initially insert-
ed at the head of this list, but when a block becomes too small

* to satisfy a request, the list head pointer advances over it,
* leaving it at the tail of the list. The result is that dwell

time for small blocks prior to reexamination is maximized. This
means that there is maximum opportunity for merges with adjacent
blocks before the head pointer returns to the block, so that free
blocks near the head of the list to be as large as possible.

It is important to the efficient operation of this algorithm in
support of frame management that memory contained on its free
list be used only for allocation of activation records. If the
same free list is used to satisfy requests for dynamically allo-
cated program structures, fragmentation becomes much more seri-
ous. It is also helpful if a reasonable minimum ratio between
free space and allocated space is maintained. If the ratio falls
below about 33%, the memory manager should probably request addi-

II-2.A7

* . . .- *

• . o • . ° . . . * o. .. ." . -. ."

" . • . - . . .. " " . " * , .- ., " . - i " " * • .. .d*,



~. -. "-.I

package MEMORY MANAGER is
with LOW LEVELDEFS;

procedure GETBLOCK
MIN SIZE: in INTEGER;
BLOCKTOP: in out ADDRESS;
STACKTOP: in out ADDRESS;
-- handles oferflow from current block

procedure CHANGEBLOCK
BLOCKTOP: in out ADDRESS;
STACKTOP: in ADDRESS
-- for procedure return causing change in current block

procedure CLOSE TASK STORE
BLOCKTOP: in ADDRESS;
STACKTOP: in ADDRESS;
FLHSAVE: out FBCPTR;

) ; -- prepare storage for suspension of task

procedure OPEN TASK STORE
BLOCKTOP: out ADDRESS;
STACKTOP: in ADDRESS;
FLHSAVE: in FBCPTR;
-- prepare storage for execution of suspended task

end MEMORYMANAGER;

package BLOCK CTL is
type CTL WORD is limited private;
function-BL SIZE (C: CTL WORD) return INTEGER;
function ABOVEFREE (C: CTLWORD) return BOOLEAN;
function BELOW FREE (C: CTL WORD) return BOOLEAN;
procedure SET BLSIZE (C: CTL WORD; S: INTEGER);
procedure SET ABOVE FREE (C: CTL WORD);
procedure SET BELOW FREE (C: CTL-WORD);
procedure SET ABOVE BUSY (C: CTL WORD);
procedure SET-BELOW-BUSY (C: CTI-WORD);

private
type CTL WORD is new INTEGER;

end BLOCK CTL;

Figure A-3.1
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package body MEMORY MANAGER is
with UNCHECKEDCONVERSION;
with BLOCKCTL;

type FREE BLOCKCTLREC;
type FBCPTR is access FREEBLOCKCTLREC;
type FREE BLOCK CTL REC is

recor --
PREV: FBCPTR; -- may be overstored in busy block

NEXT: FBCPTR; -- may be overstored by unused byte
-- count on closing current block;
-- otherwise preserved as free list
-- ptr; block limit ptr points here

CTL: CTLWORD; -- size of block below, plus busy/
-- free bits for blocks above and 2
-- below; only word always valid

ABOVE SIZE: INTEGER; -- overstored with data if
-- associated block is busy

end record;

*'m- procedure GET BLOCK
MIN SIZE:-in INTEGER;
BLOCKTOP: in out ADDRESS;
STACKTOP: in out ADDRESS;

is
begin

PTRl, PTR2: FBC PTR;
UNUSEDBYTECOUNT: INTEGER;

-- get free list head ptr from current block and store
-- unused byte count at top of stack

PTRI := BLOCKTOP - 1 * WORD SIZE; 4

* ___PTR2 := PTRI.NEXT; -- (free list head ptr)
if PTR2 = NULL then -- free list empty

raise MEMORY ALLOC EXCEPT;
" . end if;

PTR1 := PTR2;
UNUSED BYTE COUNT := BLOCKTOP - STACKTOP;

* INTPTR(STACKTOP).ALL = UNUSEDBYTE COUNT;

Figure A-3.2
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-- find new block of suitable size; allocate for stack use

while BL_-SIZE (PTR2.CTL) < MIN-SIZE loop
PTR2 :=PTR2.NEXT;
if PTR2 = PTR1 raise MEMORYALLOCEXCEPT;-

end loop;
if PTR2.NEXT = PTR2 then -- taking last free block

PTR2.NEXT :=NULL;
else

PTR2.PREV.NEXT PTR2.NEXT; -- unlink from free list
PTR2.NEXT.PREV PTR2.PREV;

end if;
SET BELOW BUSY (PTR2.CTL); -- mark block busy
PTRT = PTR92 - BL SIZE (PTR2.CTL);
SET ABOVEBUSY (FTRl.CTL);
BLOCKTOP PTR2 + 1 WORDSIZE;
STACKTOP BLOCKTOP -BL SIZE (PTR2.CTL);

end;

procedure CHANGEBLOCK
BLOCKTOP: in out ADDRESS; -- input value is old block
STACKTOP: in ADDRESS; -- points into new block

is
begin

PTR1, PTR2: FBCPTR;

-- set free list head ptr in new block to block released
-- (inserts old block at head of free list)

PTRl := FBC_PTR(STACKTOP + UNUSEDBYTE COUNT -WORDSIZE);

PTR1.NEXT :=FECPTR(BLOCKTOP - WORDSIZE);

-- set return parameter to top of new block

BLOCKTOP := PTR1 + WORDSIZE;

q -- free old block

PTR1 PTR1.NEXT;

PTR1.PREV :- PTRl.NEXT.PREV; -- (free list tail ptr)
SET BELOWFREE (PTRl.CTL);- mark freed block free
PTRf PTRl BL SIZE (PTRI.CTL);

Figure A-3.3
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if BELOWFREE (PTR2.CTL) then -- merge freed block with
-- one below, prey, freed

NEWSIZE: INTEGER;

NEW -SIZE := BL SIZE (PTRl.CTL) + BL SIZE (PTR2.CTL);
SETELSIZE (PTR1.CTL, NEWSIZE);
PTR2 :=PTRl - NEWSIZE;
SETELSIZE (PTR2.CTL, NEWSIZE);

else
SET ABOVEFREE (PTRl.CTL);

end if;
end CHANGEBLOCK;

procedure CLOSETASKSTORE
BLOCKTOP: in ADD'RESS;
STACKTOP: in ADDRESS;

iFLH SAVE: out FBCPTR;

begin
OLD SIZE, NEWSIZE, RESSIZE: INTEGER;

-old, new, and residual block sizes
UNUSEDBYTECOUNT: IN.1TEGER;
PTRl, PTR2: FEBCPTR;

UNUSEDBYTECOUNT :=BLOCKTOP - STACKTOP;
PTR1 : FBC PTR (BLOCKTOP -. WORD SIZE);
RESSIZE := UNUSED BYTECOUNT - WORD SIZE;

-size of free part of current Flock, if split
if RESSIZE >= MIN SPLIT SIZE then

-split block into one busy, one free blockL

OLD-SIZE EL SIZE (PTRl.CTL);
NEWSIZE OLDSIZE - UNUSEDBYTECOUNT;
SET BLSIZE (PTRl1.CTL, RES-SIZE);
SET BELOWFREE (PTRl);
PTRI : STfACKTOP - WORDSIZE;
SETABOVE FREE (PTR2.CTL);
PTR2.ABOVE SIZE :=RESSIZE;
SET BELOW BUSY (PTR2.CTL);
SET BLSIZK (PTR2.CTL, NEWSIZE);
INT PTR (STACKTOP).ALL :0; -- unused byte count

-- insert free portion of block in free list

PTRl.PREV := PTR1.NEXT.PREV;
PTR1.NEXT.PREV :PTRl;
PTR1.PREV.NEXT :=PTRl;

Figure A-3.4
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-- return parameter saves free list while task inactive

FLHSAVE PTRl;
else

FLH SAVE PTRl.!'EXT;
INT PTR (STACKTOP) .ALL UNUSEDBYTECOUNT;

endif;
end CLOSETASKSTORE;

procedure OPENITASKSTORE
STACKTOP: in ADRESS;
BLOCKTOP: out ADDRESS;
FLHSAVE: in FECPTR;

is
begin

PTfl: FEC PTR;
* NEWSIZE: INTEGER;

PTR : STACKTOP + INT_-PTR (STACKTOP).ALL -WORDSIZE;

if ABOVEFREE (PTR.CTL) then

-- merge with upper blk

PTR := PTR + PTR.ABOVESIZE + WORDSIZE;
NEW SIZE := PTR.ABOVESIZE + BL SIZE (PTR) + WORDSIZE;
SETBLSIZE (PTR.CTL, NEWSIZE);-

-unlink from free list

PTR.PREV.NEXT PTR.NEXT;
PTR.NEXT.PREV PTR.PREV;
SET BELOWBUSY (PTR.CTL);

end if;

-- set up new block for stack use

*PTR.NEXT FLHSAVE;
BLOCKTOP PTR + WORDSIZE;

end OPENTASKSTORE;

end MEMORY MANAGER;

Figure A-3.5
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tional system memory. This provision is not included in the algo-
rithm of figure A-3, but would probably be a desirable addition

* to any actual implementation in support of tasking.
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PART 1- BACKGROUND

The Nebula Instruction Set Architecture (ISA) is a 32-bit, general-

register design originally developed for use in military embedded-

computer applications. Nebula began as part of an effort "to provide

the US Army with a family of instruction-set-compatible computers of

varying performance capabilities" [1]. Initially, this "Military

Computer Family" (MCF) project attempted to select an existing computer

architecture as the Standard. After a 2-year analysis of a number of

commercial and military machines, the Army selected in 1973 a "'best'

commercial architecture to fit its tactical requirements" [2].

Proprietary issues, however, eventually led to the abandonment of this

approach. In September, 1979, the Army, through CORADCOM, contracted

with a group at Carnegie-:Aellon University to develop a new

architecture, now known as "Nebula". The initial Nebula specification,

published as "4IL-STD-1862 on '4ay 28, 1980. has since been revised

several times; the version upon which this report is based is MIL-

STD-1862A, "Date TBD" [3], issued in late September, 1981.

Air Force involvement with the Nebula project dates from September,

1980. Although both services share the goal of developing a hardware

Standard for embedded systems, the planned Air Force uses ar.d

acquisition policies vary significantly from those of the Army. In

considering questions of software portability, it is essential to note

how the Air Force and Army differ in their plans for multi-vendor

participation:

- The Army will procure up to a 5-year supply of Nebula computers

from a single source. Design efforts are now under way by four

computer marnufacturer.-- IBA, RCA, Raytheon, and (jointly) GE
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and TRW I- to construct "Advanced Development" machines meeting

the Nebula specifications. The Army will evaluate these machir.es L--.

for performance, cost, etc., and select two of the vendors to . -i

build "Engineering Development" models. After a final analysis

by the Army, one of these two machines will be chosen, and

competitive bids (open to all vendors, not just those previously

involved) solicited for up to a 5-year supply of that machine.

At that point, the ISA may be reviewed and modified, and another

round of competitive design and implementation will begin. (The

first production units based on the initial Nebula design are

scheduled to be fielded in 1987.) By such periodic reviews and

re-designs, the Army hopes to have incorporated within its

embedded systems state-of-the-art technology while also

maintaining a standard ISA.

- The Air Force, on the other hand, intends to have cor.tinuous

competition among vendors for ever faster, cheaper, and more

reliable computers that implement a standard ISA. An 2.

"accreditation approach" is planned, through which any supplier's .-
e

machine may be acquired so long as it satisfies the

specifications of the Standard.

Because of this difference in approach, the Air Force must place very

heavy emphasis on the clarity, precision, and completeness of its ISA

Standard, while the Army may be prepared to demand far less in these

areas. This paper is part of an effort commissioned by the Air Force to

help determine whether Nebula meets its requirements for an ISA

Standard.
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PART 2 -CONCEPTS OF PORTABILITY

2.1. Nebula's Goals

The "Scope" and "Purpose" sections of 14IL-STD-1862A read, in their

entirety:

This standard defines the Nebula Instruction Set
Architecture. The instruction set architecture includes
all information required by a programmer in order to write
any time independent program that will execute on computers
conforming to this standard.

The purpose of this document is to define the Nebula
Architecture, independent of any specific implementation or
vendor, with sufficient precision to permit independent
implementations of this architecture that execute identical
programs in the identical manner. [3, p.1]

That is, a fundamental goal of MIL-STD-1862A is to define an ISA that

supports program portability: The ability of a given program to be

moved from machine to machine and function identically - and correctly

- on all of them. The primary concern of this paper is the degree to

which Nebula meets this objective.

In order to allow vendors maximum flexibility in the implementation

techniques and technologies used for Nebula, MIL-STD-1862A specifies

certain details of the ISA as being variable from machine to machine.

To avoid conflict with the portability goal described above, the Nebula

designers sought to "reduce the visibility of the hardware to the

software" [1, p.35]. That is, inter-machine differences would be

unimportant -- they would not affect program portability -- since they

would not be software-visible. An implicit concern of this paper, then,

is the extent to which the hardware variability permitted by MIL-

STD-1862A is truly software invisible.

It is worth noting that the importance of software visibility ("These
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visibility goals underlie much of the structure of the architecture

adopted for the military computer family" [1, p.353) can be traced back

to the original Army effort to select an existing architecture for the

dith a well specified architecture, details of data bus

'1CF: width, technology (core memory versus semiconductor memory,
TTL versus ECL circuits), implementation speedup techniques
such as cache memories and instruction lookahead buffers,
physical size of computer, etc. need not be of concern to
the programmer. A clear (and clean) distinction between
the architecture and implementation detail allows software
to be transported between computers with the same
architecture even though they may have very differer.t
implementations. [4, p.4 ]

2.2. Excluded Issues

Leaving Nebula aside for the moment, there are certain universally

accepted cases in which any two computers -- C1 and C2 -- with the same

ISAs may fail to run identical programs identically:

Type and Location of I/O Devices. If, for example, C1 has a tape

drive at device address X and C2 has a card reader there -- or

even no device at all - a large class of programs will operate

differently on the two machines.

- Physical Memory. If C1 and C2 have different amounts of memory,

or if the attachment of the memory modules leaves "holes" of

undefined addresses at different points in the address spaces of

the two machines, then a program with access to real memory may

not run the same on each.

- Operating System. If C1 and C2 are running different operating

systems when the compatibility test is made, almost any program

will run differently -- if it runs at all -- on the two machines.

II-3..4
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- Timing. There are a great many ways that multiprogramming load,

I/O-interrupt frequency, time-of-day-clock setting and the like "-

can influence the operation of a program. (Certain programs ..

e.'., operating systems -- are intentionally constructei to

recognize and be influenced by such phenomena.) These effects

may be observed even between multiple executions of a given

program on a single system; they may be even more pronounced when

the executions take place on physically distinct systems.

- CPU ID. Certain machine architectures provide for a software-

accessible identification code that uniquely designates each

individual CPU. A program written to examine this data can be

made to perform differently depending upon the value found.

Inter-machine differences of the types described above are not the

subject of this investigation. In all of the discussions that follow,

we will assume that such differences do not exist.

2.3. Categories of Machine Dependenoies

Given two machines conforming to the Nebula ISA Standard, the

differences between them may be divided into two categories:

1. Those documented as permissible within MIL-STD-18624.

2. Those resulting from contradictions, ambiguities* or omissions .

in MIL-STD-1862A.

If any other differences exist, then one of the machines must violate

the Standard in some way.

Differences in Category 1 are described in MIL-STD-1862A by several

terms, including "implementation dependent", "undefined", and

"unpredictatable". The word "reserved" is also used to indicate areas

11-3.5
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in which the Standard allows inter-machine differences. In certain

other cases, MIL-STD-1862A simply lists acceptable alternatives, as in:

"...a Segment.Specifier exception or a hard memory error trap shall be

initiated, depending upon the implementation" [3, p.145].

Cases in Category 2 are far more numerous than those in Category 1,

arising primarily in the areas of exception and trap handling, the task

and procedure interfaces, and the memory management system. Nebula

fails to specify, for example, the rules for virtual-address

computation, the values of result operands when certain exceptions are

raised, the effect of overlapping operands (except in a few cases), the

interaction of memory management traps with operand addressing errors

and of instruction-execution exceptions with both of these, etc. Each

instance of unspecified machine behavior is an implicit implementation

dependency: No matter what a machine does in such a case, it may still

be certified as adhering to the "Standard" ISA.

The apparent reason for Nebula's silence in these and other areas is

the desire to avoid overly constraining the implementors. Whether or

not this is legitimate justification for the number of machine

dependencies in MIL-STD-1862A, these machine dependencies need to be

made explicit. That is, all inter-machine differences allowed by AIL-

STD-1862A should be in Category 1; Category 2 should not exist.

The architecture of the IBM System/360 was designed to provide the

sort of implementation independence across a wide range of machines

sought by Nebula. IBM has produced over 40 different models based on

this and the extended System/370 architectures, with a performance ratio

of up to 450:1 between the most and least powerful. In addition, other

vendors have successfully designed and manufactured mainframes that are

plug-compatible with these IBM systems. It is therefore worth noting
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the following comments contained in a recent article by one of the

System/360 designers:

In order to ensure compatible implementations, the
architecture has to be complete in that it must cover all
functions of the machine that are observable by the
program, including all the unlikely concurrent occurrences
of different unusual exceptions. It either must specify
the action the machine performs or state that the action is
unpredictable...

The System/360 architecture did not provide adequate

precision and detail in some areas. Because there was no
specification of the priority in which concurrently
existing program exceptions are recognized, programming of
virtual machines was made difficult. Because the sequence
and concurrency for storage accesses were not specified,
processors could not communicate reliably using shared main
storage. And because not enough details in machine-check
handling were specified, the possibility of model-
independent recovery after an equipment failure was
reduced. [5, p.384]

Not all instances of ambiguity or self-contradiction in MIL-STD-1862A

have a direct bearing upon software portability. It is important to

note that these exist, however, since they contribute to the overall

level of imprecision of the document. Consider Section 5, "Operand

Addressing Modes", in which Nebula's 12 operand specifiers are defined

and described. The operand specifiers

contain the information to determine the location and the
size of the operands to be accessed... The location
(address) of all operands must be computable in the absence
of any context information provided by the opcode. This
permits operands to be "pre-evaluated" in the absence of
such information... [3, p.7]

While this is certainly a valuable property for an ISA to have (see

[6]), there are at least 32 Nebula instructions with operand formats

that are "special cases": not represented by an operand specifier. No

operand pre-evaluation is possible without at least enough context -

information to know that the opcode is not one of these 32.

Furthermore, for 3 Nebula instructions, determining the format of

13
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operands after the first one requires examining a separate value in

memory, the address of which is specified by the first operand. .

2.4. Detecting Machine Dependencies in Nebula Programs

As already mentioned, it is quite possible -- in fact, trivially easy

-- to write Nebula programs that fail to operate identically on two

different machines conforming to MIL-STD-1862A. On the other hand, it

is also possible to write a large number of programs that may be moved

from machine to machine without detectable change. The important issue

here is how to tell which of these categories a particular Nebula

program belongs to.

For almost all user programs, the execution environment is

established only partially by the machine architecture; a significant

component is provided by the operating system. Given that it is

possible to write non-portable Nebula programs, it is natural to ask

whether a Nebula operating system could be built to limit user programs

to only the machine-independent features of Nebula. If so, the problems _

caused by implementation dependencies in MIL-STD-1862A might be

minimized, since these would show up as "bugs" during software testing.

The Nebula designers clearly had such a software-enhanced execution

environment in mind, as indicated by the following statements:

This restriction [on the effects of Nebula actions

characterized as "unpredictable") may be breached by a
supervisor that gives a user access rights to critical

memory or functions. For this reason, access to the CPU

registers in the I/O space should be controlled by means of
the memory management system. (3, P-3]

The memory management system provides a mechanism for

protecting against such invalid software actions [as
reading or writing parts of the context stack]. (3, p.25]

11-3.8
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In time critical applications that are deeply nested, an
exception handler should be inserted every few levels to L
insure proper response to interrupts. [3, p.36 ]

Although an operating system might well be able to deal with these

specific situations -- i.e., denying the user access to the context 2
stacks and I/O space, and ensuring availability of an interrupt handler;"

the vast majority of machine dependencies cannot be masked from user

programs by the operating system. (See especially Section 3.1, "Some

Fundamental Questions", below.) Moreover, even if such an operating

system could be constructed, it would not itself be implemer.tation

independent: Each Nebula implementation would require its own version < 1
of ar. operating system designed to mask its implementation dependencies

an example of the sort of duplicate effort which should be eliminated

by a standard ISA. The cost of such an operating system -- both initial

development and subsequent maintenance - should properly be included in

the life-cycle cost of the hardware. S

An operating system does not represent the only technique available

for hiding machine dependencies. An assembler, for example, might be

designed to prohibit -- or at least flag -- instructions whose execution

could vary among Nebula implementations. Compilers might be constrained

to generate only code sequences whose behavior was consistent across the

entire range of Nebula machines. Again, however, the imprecision of

MIL-STD-1862A makes the possibility of constructing such assemblers and

compilers doubtful. And it would certanly be impossible to verify that

a compiler or assembler did, in fact, make Nebula's machine dependencies

software invisible. Similarly, there can be no set of programmer

guidelines whose observance would guarantee software portability across

Nebula machines.

1 3 ]-J



-. - s - 'rjv ..

Nebula and Portability Concepts

2.5. The Question of Errors

Many of the inter-machine dependencies cited below have to do with

programmer errors, and it might be said that programmers should simply

avoid making mistakes whose consequences are machine-dependent (or

accept machine dependencies as one of the consequences of an error).

Such a response is unacceptable, however, for the following reasons:

- However hard a programmer tries, errors are inevitable. If a

"Standard ISA" allows non-standard error responses, the

programmer must be familiar with each machine's particular

idiosyncrasies before fully understanding how to debug his

programs. With debugging representing a significant part of the

cost of software development, a Standard ISA cannot afford to

leave error responses to each vendor's taste.

- It is one thing for machines to provide different forms of

notification when faced with a particular error case; with

sufficient study or perseverence, the programmer will eventually

uncover the source of the failure and correct it. But what if

the mistake is such that one "Standard" machine recognizes it and

one does not? And what if development is carried out on the more

tolerant machine, while the target computer, the one in the

aircraft, say, is the one that traps on the error? Imagine, for

example, that the programmer develops a subroutine on a Nebula

which - in full conformance with MIL-STD-1862A - is generously

silent about the insertion of non-0 bits in some or all of the

architecture's "reserved" bit fields. It is unlikely that such a

bug would be uncovered before the software is installed (and

13
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fails) in the "Standard" embedded system in the field.

In light of these considerations, the following passage from the

definition of "Unpredictable" in MIL-STD-1862A should be noted:

An unpredictable action may produce any change in the state
of the machine that is consistent with the rights of the
program that caused it. For example, an unpredictable
operation performed by a user task may destroy any of the
locations it can access normally, but shall not destroy any
state protected by the protection mechanisms... It should
be noted that while the programmer cannot rely on any
properties of an unpredictable action, it is considered
desirable to make such actions as innocuous a practical.
[3, P.31

rhe fir.al sentence is the opposite of what is required for portability:

The more innocuous an "unpredictable" action is on a given Nebula

computer, the more likely that such an action will be incorporated,

undetected, within a Nebula program.

For the purposes of software portability, Nebula should be designed

so that

1. A particular operation will raise an error indication in all

machines or none, and

2. The same error indication will be raised in all machines.

2.6. Two Examples

4 As one of the industry's most widely copied architectures, it is not t

surprising that the IBM System/360 design has generated a number of

examples relevant to the discussion of software portability. In both of

the cases described below, "plug-compatible" machines turned out not to

be.

1. The BXH instruction ("Branch on Index High") is usually used on

IB11 System/360 and System/370 machines to control loops. It--

*.1
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includes three register operands: a base, an increment, and a

comparand. The base is increased by the increment, and a branch

is taken depending upon the relation of the sum to the

comparand. If the base and comparand registers coincide, the

system architecture descriptions [7, 9) state that "the original

contents are used as the comparand". Thus, by specifying the

same register as base, increment, and comparand, it is possible

to use a single instruction to double a register and br.,ch if

its original contents were positive. At least one model,

however, of an IBM-plug-compatible series of machines

manufactured by ICL-Dataskil (London) in the late 1960's failed

in this case to compare the updated register with its original

contents. System/360-targetted software depending on this

feature -- and there was some -- did not operate properly on

these machines.

2. The TRT ("Translate and Test") instruction in IBM's architecture

is similar to Nebula's SCANB: Each byte in a source string is

used as an index into a table (a bit table in Nebula, a byte

table in System/360-370), and the table value determines whether

the next source byte is to be processed. The TRT instruction

includes a length specification for the source string, which

gives an upper bound on the number of bytes to be processed.

(Of course, the actual number of bytes processed depends upon

the contents of the string and table.) It is common programming

practice to append a "sentinel byte" - one whose table value

will stop the scan if no prior byte does -- to the source

string. The maximal string length (256) may then be used, and

no length calculations are required.
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This technique works, in part, because the IBM System/370

architecture specifies that only those source-string bytes

preceding a "break byte" are actually fetched from memory. No"

memory-reference exceptions, therefore, may be caused by the

portion of the source string beyond the sentinel. A "plug-

compatible" machine manufactured by Siemens AG (Munich),

however, tested to see that the pages contairing the er.tire

source string, as defined by the length in the TRT instruction,

were accessible before beginning execution of the instruction.

In the rare cases when a source string was located close to the

end of the virtual address space of a process, an unanticipated

page fault might occur.

These anecdotes help emphasize the need for careful analysis of the

operation of any machine that is supposed to function according to a

particular architectural specification. However, no such analysis is

possible unless the specification itself is clear, precise, and

complete.

In addition, the examples exhibit two different levels of j
detectability for machine dependencies. Once the case of the BXH

incompatibility became known, assemblers for ICL machines could easily

have been modified to detect and flag any instances of the problem

instruction. With the TRT problem, however, there is no way for a

programmer to automatically be kept from intentionally or inadvertently

writing machine-dependent code. The TRT anomaly, therefore, is far more

dangerous, and would be far more important to correct. It must be noted

that the great majority of inter-machine differences allowed by MIL-

STD-1862A are of the latter variety.
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2.7. "Controlled Non-Portability"

Part 3 of this paper details many of the ways that a given program

may function differently on two different Nebula computers. Along this

vein, it will be shown that MIL-STD-1862A explicitly and implicitly

allows implementors too much flexibility for the software portability

that was one of its primary goals.

Although the purpose of this study was to identify all portability-

related lebula problems, it is not the case that an acceptable 3A

Standard must allow absolutely no inter-machine differences. A designer

of the IBM System/360 architecture has observed:

Identical action in all machines is less likely to cause
problems with compatibility and has a certain aesthetic
appeal. Indiscriminately specifying predictable operation,
however, may present problems when the predictable
operation is of insignificant value to the user and some
later machine has difficulty complying with the required
predictability. Whereas specifying initially that an
operation is unpredictable might have been quite
acceptable, relaxing the architecture definition to permit
unpredictability has certain risks, because some programs
may have come to depend on the initial, precise definition.
Thus the architect has to make a deliberate decision about
the extent of predictability. [5, p.384 ]

The key phrase here is "deliberate decision", leading to what might be

called "controlled non-portability".

In order for deliberate decisions to be made about potential

implementation dependencies, it is first necessary to have a very

precise definition of the ISA which is not implementation dependent.

There must be no ambiguities in such a definition, no obscure cases

whose results are left unspecified. Only then can a careful, rational,

deliberate decision be made regarding any proposals to relax a

particular requirement so as to allow inter-machine variation.

11-3•14
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Useful consideration of a proposal to allow a machine deper.dency

requires an analysis of its costs and benefits. How likely is it that a

programmer will stumble into the resulting portability problem? Is

there any way of automatically detecting the problem at compilation or

assembly time? Can an c.!rating system rule out the problem during

execution? What specific payoff - e.g., cheaper (how much cheaper?) or

faster (how much faster?) hardware -- will actually result?

Starting from a suitably complete ISA Standard, the Nebula Review

Board (or some technical group appointed by the Board) might perform

such an analysis for any vendor's proposal to relax the Standard. In

this way, only those implementation dependencies with sufficiently low

cost/benefit ratios would ever exist, and those that did exist could be

carefully documented and perhaps even monitored by operating systems,

compilers, and assemblers.

The idea of strictly controlling architectures and implementations so

as to limit software portability problems is not a radical or new one;

its use in commercial architectures provides reason to expect a high

payoff. Again considering the IBM System/360:

A set of procedures have been established for the
development of an architecture, starting with the
conception of the idea and ending with the formal adoption
of a definition. These procedures provide for the
assessment of the cost and value of a function and for the
approval of the architecture by machine and software
implementers. Rules have been established about the extent
of architectural compatibility, and provision is made for
deviating from the common definition.

Although the implementation of a line of compatible
computers did not take an undue amount of effort, the

design and control of architecture proved to require more
attention to detail than originally anticipated.
Furthermore, experience with System/360 and its subsequent
extensions has shown that the management of architecture
must be an ongoing operation to ensure that the evolution
of the architecture structure is governed by a consistent
set of principles and a design philosophy. [5, p.385-386]
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Similar safeguards have been taken for the architecture of the VAX

family of computers:

The goal of achieving software compatibility in a family of
machines requires a certain amount of discipline in the
design process that shapes the underlying architecture...
Because software compatibility over a wide range of
implementations was a major design goal for Digital
Equipment Corporation's VAX series of computers,
architecture management was put in place during the early
stages of design... The emphasis is clearly on maintaining
architectural stability by eliminating gratuitous
differences... Future enhancements will be incorporated
into the architecture in a carefully controlled manner...
The architecture management function is delegated to a
centralized organization that is not biased by the
parochial needs of specific hardware or software
development projects. Architecture management activities
center around both the active maintenance of the
architecture control document and a well-defined process
for the consideration of changes to its content... The
architecture document is intended to be complete and self-
sufficient. Whenever ambiguities, contradictions, or
missing links are found in the specification, the document
is updated. [8, p.87-90.

The relevance of DEC's and IBM's experiences in this area was evident

to those who conducted the 1976-1978 evaluation of commercial ISA's as

candidates for the Army's MCF:

By careful family planning, IBM has attempted to insure the
transportability of user programs between machine models.
While not 100% successful in this goal, IBM has over 15
years of experience and has come closer to the
transportability goal than any other manufacturer.

DEC has built a family of PDP-11's, but there are now
incompatibilities in the instruction sets. Certain
instructions execute differently on different machines. If
there is no canonical PDP-11, then all the software may not
be transportable throughout the MCF. Family consistency
requires careful planning. (IBM has a full-time staff of
12 professionals whose sole job is to insure family
consistency). [13, p.10-11

In summary, then, a standard military ISA should be developed, defined,

revised, and monitored at least as carefully and precisely as the best

commercial techniques allow.
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PART 3 - PORTABILITY PROBLEMS IN NEBULA

This section documents some of the most important, most obvious, and

most interesting ways in which a program may fail to execute identically

on various Nebula machines. Not all possibilities have been covered.

In particular, the entire Nebula 1/O specification is left to another

paper. Even ignoring I/O, however, the scope of implementation

dependencies within Nebula is far too complex to itemize completely.

In many cases, the portability problem is posed in the form of a

question: What will a Nebula machine do in the following circumstance?

These are generally areas where MIL-STD-1862A fails to indicate how a

calculation is to be performed, whether a particular set of events is

legal, what sort of exception might be raised, etc. Each implementor

will encounter these questions (and many others) in the process of

designing and building a Nebula machine; with no guidance from the

"Standard", it is certain that different vendors will arrive at

different answers.

3.1. Some Fundamental Questions

Because MIL-STD-1862A nowhere defines the "basic machine cycle" of

the Nebula architecture, nor specifies how operand evaluation and

instruction execution relate to each other, certain basic issues are

left ambiguous. Some of these will come up again in later sections, but

it is useful to summarize them here.
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3.1.1. Calculation of Virtual Addresses

MIL-STD-1862A defines the Architectural Virtual Address Space to be

"the number of distinct byte virtual addresses that can be generated by

the addressing modes of the architecture" [3, p. 4 33, and specifies its

size as 2**32. That is, all Nebula virtual addresses are representable

as 32-bit quantities. There is no mention in MIL-STD-1862A, nowever, of

what happens when an address calculation yields a value outside tnis

range.

Address calculations occur in (at least) the following contexts:

- Byte- and word-indexed operand addressing modes.

- Scaled- and unscaled-indexed operand addressing modes.

- Instructions that adjust the stack pointer, including PUSH, POP,

RSR, and JSR.

- Aost of the "Control Instructions" [3, Section 221, which add 8-

or 16-bit inline literals to the Program Counter.

- The MOVTR and SCANB instructions, which use 8-bit quantities to

index into a table in memory.

- All of the "Bit Field Instructions" [3, Section 27), which modify

a storage address ("Base") by "Pos", an arbitrary positive or

negative bit count.

All instances of vectored operations, where the memory location

referenced is generally some number of words beyond (or, in

certain cases, one word before) a base address. These include

the instructions REPENT, MAP, SETSEG, and SVC, along with all .

traps and interrupts.

There are several reasonable ways that a vendor might implement

virtual-address calculations:

13
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- Perform all virtual-address arithmetic modulo 2**32; that is,

keep only the last 32 bits of all calculations.

is negative.

- Treat all virtual addresses that are 2**32 or higher as 2**32-1

and/or all virtual addresses that are negative as 0.

The only reference to this problem in MIL-STD-1862A involves the

multiplication necessary to do the scaling for the scaled-index operand

addressing mode. In this case, "if the index overflows during scaling,

the low order 32 bits are added to the base to form the operand address"

[3, p.17]. Rather than helping, however, this isolated reference

presents a dilemma: If modulo-2**32 arithmetic is used for index

scaling, what different rule (or rules) are in effect for other address

calculations? If modulo-2**32 arithmetic is the normal mode (as one

might suppose), why make a special statement for index scaling?

The Standard should state clearly how virtual address calculation is

to be performed.

3.1.2. Operand Evaluation and References

MIL-STD-1862A states: "Addressing modes are also required to be free

,4 of side effects. This eliminates any order dependencies in operand

evaluation" £3, p.71. (The "also" refers to Nebula's provisions to

allow "operand pre-evaluation", which have been dealt with previously in

4 this paper.) It is clear, however, that operand evaluation may have

some very significant side effects: exceptions and traps. When

evaluation of one or more operands of an instruction causes an exception

or trap, the order of evaluation is visible to the software. -
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For portability, it is essential that memory-management traps occur -

predictably from machine to machine. That is, a program that runs

correctly on one version of Nebula should not be able to cause a memory-

management trap on a different "Standard" machine. Note that a program

may be "correct" even if it involves an exception. Ada, for example,

considers exceptions an integral part of its language specification, and

several features of Nebula's exception-handling mechanism have been

influenced by the Ada requirements. In general, exceptions are p

conditions that may legitimately be handled by an application program

without operating-system intervention; traps, on the other hand, must

always involve the operating system.I

MIL-STD-1862A violates the requirement for predictability of memory-

management traps in at least the following ways:

- Since order of operand evaluation is unspecified, an exception

raised by one operand might mask a memory-management trap in

another.

- For the CMPBK, MOVBK, MOVM, and MOVTR instructions, it is not

specified whether a memory reference occurs (or, in fact, whether

the remaining operand specifiers are evaluated at all) in cases

when "Cnt" is 0. The same applies to the SCANB instruction when

"Sler." is 0, and to the SBF, LBFS, and LBF instructions when

"Size" is 0.

- For the MOVBK instruction: "If Src=Dest, the implementation is

not required to check or perform memory accesses" [3, p.131].

- For the CMPBK instruction: "If the two blocks are not equal, the

implementation is not required to check or perform memory

accesses beyond the first nonequal items" [3, p.130]. 2

- In the case of the MOVTR and SCANB instructions, must. the
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implementation determine the accessibility of all the bytes of

the table (256 for "Table" in MOVTR, 32 for "Btable" in SCANB),

or only the portion indexed by the bytes in "Src"?

- For the SCANB instruction, must the implementation test the

accessibility of all "Cnt" bytes of "Src", or only those bytes..

actually fetched?

- The CMPS instruction compares the values of two of its operands,

and assigns to one or the other depending on the result, lust j
both operands be write-able, or just the one actually selected

for modification?

- May an implementation, as part of pipelining or some other

speedup technique, suppress evaluation of an operand specifier if

the operand value is not needed? For example, if one operand of

the MUL instruction can be quickly determined to be 0, is it

legitimate to set the result to 0 immediately? If the divisor in

a DIV instruction is 0, may an implementation raise the

Illegal.Divisor exception without evaluating the dividend?

For full transportability, exceptions as well as memory-management

traps must be predictable. The complexity of the Nebula architecture

makes it extremely difficult to specify completely the interaction of

all exceptions and traps, short of a full description of the logic of

operand evaluation and reference. The reluctance on the part of

Nebula's designers to include such a description is understandable.

Although it deals with a somewhat simpler architecture than Nebula,

the description of "Serialization" for the IBM System/370 (9] suggests

an approach:

All interruptions (which include what would be called
"exceptions" and "traps" in Nebula], and the execution of
certain instructions, cause serialization of CPU operation.

11-3.22
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Execution of a serialization function consists in
completing all conceptually prior storage accesses by this
CPU, as observed by channels and other CPUs, before the
conceptually following storage accesses occur. (9, p.28)

One of the merits of such an approach is that there need be no

serialization-caused delay in machine execution until an exception or

trap occurs. On the other hand, depending on the implementation, a

great deal of circuitry might be needed to make this serialization

possible, perhaps leading to an unacceptably expensive machine. An

analysis of the costs and benefits of a serialize-on-exception/trap

capability should be part of the evaluation of proposed Nebala

implementations. However, no such analysis can take place for Nebula

4 computers, since MIL-STD-1862A is not precise enough to determine the

meaning of the phrases "conceptually prior" and "conceptually

following".

Similar topics are considered for DEC's VAX architecture (10], upon

which Nebula is loosely based, in [12, p.51-52]. It is worth noting the

following description of exceptions on the VAX architecture:

Both hardware- and software-detected exceptions occur
synchronously with the execution of a process. That is, L
they occur as the result of the execution of a specific
instruction sequence; if that sequence were repeated, the
same exception would occur again. [11, p.387)

Even this level of repeatability is not assured by MIL-STD-1862A.

3.1.3. Overlapping Operands

MIL-STD-1862A considers overlapping operands for the following

instructions:

- EDIV, EXCH, and MAP. Each of these instructions has two output

operands. If these operands overlap, MIL-STD-1862A specifies
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that the result is undefined.

- MOVBK. "...Overlapping source and destination fields do not -7-

affect the results" [3, p.131].

- 4OVTR. "If Dest overlaps the translation table, the result is

undefined" [3, p.132].

For all of the other Nebula instructions, how will a "Standard" machine

treat overlapping operands? MIL-STD-1862A appears to leave the matter

open; does this mean that the answer is implementation dependent? For

program portability, the Standard should specify that overlapping

operands may not affect the results of an instruction, except where

explicitly mentioned.

3.1.4. The Program Counter

The program counter is one of the most fundamental components of most

computer architectures; its contents and functions are generally defined

very thoroughly and precisely. In MIL-STD-1862A, however, there is no

formal definition of the program counter. Instead, there are isolated

references to its value in certain special cases. There seems to be no

underlying model linking these special cases, leading to a confused

picture of what the Nebula program counter is and what it does.

Nebula's departure from conventional practice appears, once again, to

be aimed at providing maximum flexibility for the implementor. To

maintain the software invisibility of the resulting implementation

dependencies, the Nebula architecture provides no direct way, in

general, for the programmer to test or set the value of the program

counter. Nonetheless, the ill-defined nature of Nebula's program

counter leads to the following problem areas:
.
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- Although the Nebula design attempts to make the context area

software-invisible, at best it simply provides the means by which

an operating system may choose to make the context area

inaccessible to user programs. With respect to any user programs

not so restricted, and with respect to the operating system

itself, the context area - and, therefore, the program counter

-- is, in fact, software-visible. (See "The Procedure Interface" - .

below.)

- When a supervisor exception handler is invoked, its third

parameter is defined as:

The program counter of the context that invoked the
supervisor exception handler, as a register. This
program counter contains the address of the instruction
to be executed if the supervisor exception handler does
a RET... This parameter may be read or written.
Writing this parameter is equivalent to altering the

caller's program counter by reference. £3, p.38)

This suggests strongly that the Nebula program counter points to

the beginning of an instruction. A similar impression is

conveyed by the symbolic descriptions of many of the Nebula

Control Instructions [3, Section 22). In the following cases,

however, the program counter is described in such a way as to

make this interpretation less certain:

- For the register-indexed operand addressing modes, "if the PC

is used as the Index Register, it points to the displacement

when calculating the memory address" £3, p.12]. This

suggests that the program counter "moves over" the various

parts of the instruction being executed.

- The CASE instruction includes a list of displacements, one of

which is selected and added to the program counter. However,

"after operand evaluation the PC is pointing at
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displacement[O]. not the next instruction. Therefore the

branch displacements are relative to the address of I

displacement£O" £3, p.1091-j

- When a new procedure is entered, "space shall be allocated or. the

context stack for each register starting with 0 (the program

counter)... The contents of these newly created registers are

undefined with the exception of register 1" £3. p.27]. At what

point during procedure entry is the program counter defined? If

an exception or trap occurs during the relatively complex process

of calling a procedure, where does the program counter point?

- If an instruction crosses a segment boundary in such a way that a

memory management trap occurs, what is the program counter in the

suspended procedure?

- If the program counter references an improper segment due to a

Control Instruction - that is, If after being incremented by a

displacement, the program counter points into a segment that may

not contain instructions -- what is the program counter at the

time of the memory management trap?

- The JSR and RSR instructions may lead to traps or exceptions; .'7-7..7.

what is the state of the program counter in such cases?

- What is the state of the program counter in a procedure suspended

in the middle of an "interruptable" instruction? (See Section

3.2 below.)

Many other questions may be asked whose answers will depend upon how a

particular vendor chooses to implement the Nebula program counter. With

this degree of ambiguity surrounding such a central component of the

architecture, program-counter-related portability problems are likely to

arise with each new Nebula implementation.
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3.2. Interruptable Instructions

The 5 "String Instructions" [3, Section 26] are required by MIL-

STD-1862A to be interruptable. This means:

If an interrupt or trap occurs during the execution of such
an instruction at a point where processing has begun but
not yet completed, the intermediate state of the
instruction is preserved (in the context stack, in an
implementation-dependent form). When the interrupt or trap
handler returns and the instruction is resumed, the
instruction shall be correctly completed, provided that
certain operands of the instruction have not been altered
by means other than the interrupted string instruction...

If a string instruction is interrupted before completion,
the entire contents of its destination region, as well as
any condition codes set by the instruction, are undefined
unless and until the instruction is resumed and completed.
Moreover, if any source or destination region of a string-
instruction is altered after the instruction processing has
begun but has not yet completed because of an interrupt or
trap, or is altered because of any other memory writes not
performed by the CPU (such as an I/0 transfer) after the
instruction processing has begun but has not yet completed,
then when the instruction is resumed it shall completely
and correctly transfer control to the next instruction, but
the contents of any destination region are undefined, and
any condition codes or ordinary destination operands set by L
the instruction are undefined. [3, p.129]

Each implementation dependency and undefined state in the above

description is an opening for non-transportability. There are,

moreover, additional problems here that are much more subtle:

-Among other things, memory-management traps will be used to

indicate the need to read non-resident segments into memory from

disk. However, the passages from MIL-STD-1862A quoted above

state that such input produces undefined memory locations

whenever the trap involves a destination region of a string

instruction. This effectively rules out demand-paging systems on
4I
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Nebula.

- In the case of either an interrupt or a trap, a task switch may

be necessary (for example, to process an interrupt in the context

of the task that requested the I/O). (4ay the memory map -- or

the map pointer -- be changed while a string instruction is

suspended? What is meant by modifying the source or destination

regions of a suspended instruction in a suspended task?

- To avoid the possibility of a nonterminating succession of

segment faults, an operating system would need to "lock" any

memory-resident segments of a suspended string instruction. The

AP instruction can be used to determine the segment in which the

trapping memory reference resides, since the trap handler

receives its address as ?1. How can the segments of the other

operands be determined? The trap handler receives the address of

the opcode of the problem instruction (as ?2), but determining

the memory locations of its operands may require access to the

register and parameter descriptors within the context stack, and

these are maintained in an implementation dependent format and

location. Furthermore, any attempt by the trap handler to look

at the operand specifiers of the suspended instruction might

itself cause a trap for reading a code-only segment (unless the

trap handler modified the segment's access bits, the legality of

which is unclear for a segment containing a suspended

instruction). Of course, the trap handler could attempt to

construct a MAP instruction containing the operand specifiers of

the trapping instruction, but this technically constitutes self-

modifying code, which cannot be executed implementation-

independently (see "Cacheing and Pipelining", below).
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- Whenever an 1/0 interrupt occurs, an arbitrary area of memory

within the interrupted task may be undefined, since a string

instruction might have been executing. Each subsequent interrupt

has the potential of increasing the amount of memory with such

implementation-dependent contents. A complete characterization

of the system state - in, for example, a memory dump -- may be

very difficult, if not impossible, to understand.

- The above description of interruptability assumes that the trap

handler will return using the RET instruction. What if ERET is

used? Does the instruction remain suspended pending return from

the Supervisor Exception Handler? Are new implementation

dependencies introduced by this sequence of events?

The above-quoted section was added to the "Date TBD" version of MIL-

STD-1862A to help clarify a number of questions raised during review of

earlier drafts. However, significant problems remain.

3.3. Cacheing and Pipelining

Cacheing and pipelining are two "implementation speedup" techniques.

In cacheing, certain recently- or frequently-referenced memory locations

are maintained in registers or other fast-access storage, rather than

main memory; in pipelining, sub-parts of one or more machine

instructions are performed in parallel and/or in a time-optimal

sequence, rather than in the order suggested by the architectural

description. In conventional architectures, pipelining and cacheing are

visible to the programmer in only a very few well-defined situations, if

at all. For example:

In VAX family processors, the cache is implemented in such
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a way that its existence is transparent to software (except ..
for timing and error reporting/control). (12, p.8 4].

Each CPU may have an associated cache. The effects, except
on performance, of the physical construction and the use of
distinct storage media are not observable by the program.
£9, p.14]

In very simple machines in which operations are not .

overlapped, the conceptual and actual order [of storage
references and instruction processing] are essentially the
same. However, in more complex machines, overlapped _...
operation, buffering of operands and results, and execution ".".- -

times wich are comparable to propogation delays between
units can cause the actual order to differ considerably A
from the conceptual order. In these machines, special
circuitry is employed to detect dependencies between
operations and ensure that the results obtained are those
that would have been obtained if the operations had been
performed in the conceptual order. [9, p.23]

That is, conventional architectures go to some lengths to shield the
a_

programmer from the effects of implementation speedup techniques.

However, regardless of assurances to the contrary (see the above

references to "visibility" in [1]), many aspects of MIL-STD-1862A serve

to place upon the programmer, rather than the hardware, the burden of

avoiding cache- and pipeline-related anomalies. The following is a non-

exhaustive list of such cases:

- In Section 8.1.3, "Cacheing of the Context Stack", MIL-STD-1862A

states:

In many implementations it will be desirable to
maintain such information in fast registers... The
Nebula architecture does not define the properties of

any such cacheing mechanism. The representation of the
context area of the active (Kernel and Task) context

stacks is IMPLEMENTATION DEPENDENT. The value of such

memory locations is undefined. The effect of storing
into such memory locations is unpredictable. £3, p.25;

emphasis in original]

In Section 15.2, "I/O Space Assignments", MIL-STD-1862A states:

Accesses to ALL registers in 1/0 space are ..

restricted... Accesses that do not meet these -"

restrictions shall produce one of two outcomes; either
the access shall complete as requested or the access
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shall produce a hard memory trap. The choice is
implementation dependent.

The Kernel context pointer, the Task context pointer,
the User map pointer, and the Supervisor map pointer
are special registers that determine the control flow
of the computer. As such, reading them through the 1/O
space may yield old or undefined values. Writing these
registers through the I/O space will produce
implementation dependent results. [3, p.71]

The Nebula restrictions on I/O space access are apparently due to

implementation considerations. While such restrictions have no

direct effect on portability, allowing an implementation to

arbitrarily decide whether to enforce them is not reasonable.

Nebula machines should all either trap on invalid I/O-space

accesses or else perform them properly.

- In Section 12.3.1, "Cacheing of Memory Maps", MIL-STD-1862A

states:

In many implementations, it will be desirable to cache
parts of the memory maps, such as the map size and a
few recently used map entries. The properties of any
such cacheing mechanism are implementation dependent.
[3, p.47]

Subsequent paragraphs contain requirements that the LTASK and

REPENT instructions "force the cache to be consistent" with the

storage representation of all or part of the map. It is not at

all clear, however, what this "consistency" entails, nor how long

4it lasts. L

- In Section 12.2.5.1, "Self-Modifying Code", MIL-STD-1862A states:

If access protection is disabled, it is possible to
execute instructions that write their operands into the
instruction stream in the immediate vicinity of the
program counter... Since modern implementation
techniques usually require some type of instruction
pre-fetch, the action of such self-modifying code is
unpredictable. Modifications (or data writes) to the
instruction stream are guaranteed to be interpreted as
stored only if a REPENT or LTASK instruction is
executed before execution of the modified instruction -_
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stream is begun. [3, p.47]

While it is true that restrictions on self-modifying code are not Al

uncommon in "modern implementation techniques", the above

specification is unsatisfactory in several ways:

- First, and most important, the term "immediate vicinity" is

completely undefined! Self-modifying (whether intentionally

or as the result of an error) programs will work on certain

Nebulas without the use of LTASK or REPENT, but will fail on .

machines with a different "window of unmodifiability".

- Although self-modification is generally considered to be a

poor programming practice, it must be recognized that the

initial loading of a program into memory and any use of code

overlays involve modification of program memory. To what

extent are these operations legal, and what does the

programmer need to do to ensure their proper function?

- In the System/370 architecture, consistency of the

instruction pipeline and memory may be achieved by executing

a particular form of no-op instruction. This is a small

(2-byte), quick (no memory references), side-effect-free

instruction that may be executed by any process in any state.

By contrast, the LTASK and REPENT instructions involve

significant CPU processing, require operand evaluation, may

cause exceptions and traps, and need special privileges for

execution. The request for instruction-stream consistency is

very difficult.

In Section 12.3.3, "Aliasing of Physical Addresses", MIL-

STD-1862A states:

Using the relocation facility of the memory management

13
11-3.32

- . • ..



*Nebula and Portability Problems

system, it is possible to map two distinct virtual
addresses onto a single physical address. This is
known as aliasing of a physical address. In pipelined
implementations, it may be desirable to use virtual
addresses for data access coordination. In this case,
the order of multiple accesses to the same physical
address through different virtual addresses is
unpredictable. The practice of aliasing physical
addresses should be avoided. E3, p.481

In many architectures, a prohibition against the sort of aliasing

described here might be reasonable. In the case of Nebula,

however, aliasing provides the only convenient way to implement

storage that is readonly to a user but read/write to a

supervisor. Some less sweeping elimination of aliasing is

required.

3.4. The Procedure Interface

.INebula's procedure interface is one of its most distinctive features. _

A stack of "procedure contexts" maintains, in an implementation-

dependent manner, the "current state of execution" t3, p.2 3] of all

active procedures, including PSW, registers, parameters, exception

handler, etc. By leaving the format of the context area open, the

Nebula designers meant to provide "considerable freedom in the structure

of the local store" [I, p.37]. As mentioned earlier, all aspects of

this structure were to be invisible to the software.

In reality, however, the context stacks are not software-invisible.

An operating system may choose to restrict a user program from accessing < 1
this memory, but there is no architectural requirement that it do so.*e
'4IL-STD-1862A does require that, at the time of call, the context area

for the called procedure -- and perhaps the calling procedure, although

this is not clear -- occupy context-only storage. For procedure

1-L i
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contexts further down the call chain, in suspended tasks, or in storage

that has been re-mapped for any of a variety of reasons, however, there

is no architectural reason for an operating system to restrict user

access. And, of course, the operating system itself can clearly choose

to examine or modify context-stack areas. Any such reference -- whether

intentional or the result of a programming error - may produce

different results on different "Standard" machines, and therefore

entails a portability problem.

Not only is it possible for software to access Nebula's procedure

contexts, but in certain cases such access represents the only (or only

convenient) way of performing a necessary function. Most of these

involve anticipated requirements of operating-system or other

supervisor-level routines. Although it may be possible to meet one or

more of these requirements in a non-implementation-dependent manner, the

burden of proof should reside with those making such a claim. "Proof",

in this case, can only consist of a fully functional machine-independent

operating system.

The unspecified format of Nebula's context stack presents problems in

at least the following cases:

- The size of a procedure's context area will vary from

implementation to implementation. Size information is needed in

order for the operating system to allocate sufficient space for

interrupt processing, as well as for the supervisor exception

handler, trap handlers, etc. (See below for a list of unresolved

issues in the area of context-stack overflow.) Although certain

components of the procedure context strongly suggest storage

sizes (e.g., the PSW and registers), the space requirements for

others are intentionally left open by MIL-STD-1862A. In
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particular:

- "The size and format of the parameter descriptors is

implementation dependent" [3, p.323.

- "Encodings of the states [of the exception handler for a

procedure] in the context area shall be implementation

dependent" [3, p.35).

- "...The intermediate state of the instruction [suspended due

to ar interrupt or trap] is preserved (in the context stack,

in an implementation-dependent form)" [3, p.129].

- The current Nebula procedure context is indicated by a pointer

whose exact value is implementation dependent:

The address in the context pointer shall be greater
than or equal to the smallest address occupied by the
current context. When a new context is created, the
context pointer prior to being decremented shall be

greater than the address of any byte of the newly
created context. These restrictions imply that a
context area may be initialized by setting the context
pointer to the greatest word address in the context
area plus '4. [3, p.25)

It is not clear that this provides enough information for an

operating system to initialize context areas in all cases, and

might easily lead to a wide variety of portability problems.

- Many programming languages provide a form of dynamic storage ,

allocation for which periodic "garbage collection" is, if not

absolutely required, at least desirable. Among the many ways of

performing garbage collection, the most common involve "marking

algorithms", which require that all currently-accessible data

items be flagged. Data items may be accessible through pointers

contained in registers and parameters of non-current procedures.

A garbage collection routine must therefore have access to such

registers and parameters, which in Nebula may be obtained only in
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an implementation-dependent manner.

- Similarly, a run-time debugging package requires knowledge of

register and parameter values for all procedures in a call chain

in order to provide the programmer with a complete description of

the system state. Again, only a machine-dependent version of

such a package could be built in Nebula.

In addition to these format-related points, the following portability

problems exist witli respect to the calling mechanism itself:

- Except possibly for register 1, register contents upon procedure

entry are undefined. Thus, accessing a register before assigning

it a value will produce implementation-dependent results. Since

"use before definition" is one of the most common programming

errors, this is likely to be a major source of portability

problems. An ISA Standard should either specify initial register

contents or else stipulate that an Uninitialized.Value (or some

similar) trap must occur upon reference to an uninitialized

register.

- It is unclear what happens if there is insufficient storage in

the current context-only segment at the time of procedure

invocation. Will a contiguous context-only segment be used if it

exists? If so, does the new context cross a segment boundary?

What sort of re-mapping, if any, may a trap handler perform in

such a case to expand the available context-only memory? What if

there is insufficient context-stack space for the trap handler to

be called? Similarly, what happens when insufficient context-

stack space exists for processing an I/O interrupt, hard or soft

memory error, exception, etc.?

One additional confusion about Nebula's context areas is worth

11-3.36
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noting. On page 24, MIL-STD-1862A describes in detail the order of

storage within a procedure context of the PSW, registers (even

indicating the sequence in which these appear), parameter descriptors,

and exception-handler state. Since at least one item is omitted from -

the list (the "intermediate state" of a string instruction suspended by

a trap or interrupt), since the formats and lengths of the other items

are machine dependent, since the item pointed to by the context pointer

is also machine dependent, and since context-stack storage is not

supposed to be software-visible in the first place, this structural

information is of no use to the programmer. Its only apparent effect is

to place constraints on the implementors, which is contrary to the

general flavor of the "Standard".

3.5. Additional Problem Areas

Ir. the previous sections of this report, the deficiencies in a few

areas of the Nebula architecture were described in detail. The

following list presents in more general terms some of the portability

problems in the remaining areas of Nebula:

Sensitive Fields. Nebula defines a great number of fields whose

contents are implementation dependent, reserved, or otherwise

restricted. Software modification of many of these fields

produces "urpredictable" results. Every field of this type

provides yet another opportunity for a program to act differently ..- "

on different Nebula implementations.

- Maximum Number and Minimum Sizes of Segments. Nebula allows each

implementation to decide on the maximum number of memory-

management segments permitted (at least 16) and the minimum
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acceptable size of each (at most 256 bytes). Since there appears .-.

no way for software to determine these maximum and minimum

values, a transportable Nebula operating system that takes full :'- 1

advantage of hardware support for memory management would be

impossible to construct.

- Data on Segment Boundaries. MIL-STD-1862A states

When a 2, 4, or 8 byte primitive data object... is
being accessed, segment association, relocation and
protection checks function as if the object were
referenced one byte at a time. [3, p.45-

For all of the cases in which memory is accessed other than for a

primitive data object, how are segment association, relocation,

and protection checks performed? These cases include at least

the following: Instructions (including up to 257 operands on the

CALL instruction and up to 65,539 on the CASE instruction),

Procedure Descriptors, and SVC and OPEX Vector Tables.

- Undeflned Operand Sizes. MIL-STD-1862A specifies that:

If... an instruction encounters an operand whose size is

not defined in the instruction description, the
instruction shall abort and the PC shall be reset to
the beginning of the instruction. An OPEX vectored
call shall be initiated using the instruction's opcode
as the index and its operands as parameters. The
number of parameters for this OPEX procedure will be -.

the same as the number of operands defined for the
opcode in its instruction description. [3, p. 171]

There is at least one case still left open by this provision: If

the index specifier in scaled- or unscaled-index addressing mode

is a 64-bit integer, the resulting address is "undefined". In

other cases, the OPEX convention raises troublesome questions:

For several Nebula instructions, the number of operands is

determined by the programmer. How many are passed to the OPEX

call? For CASE, LOOP, IBLEQ, and the various other instructions

11-3.38
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whose operands include items not represented by one of Nebula's

operand specifiers, how are the parameters to the OPEX call

specified at all?

- Debugging Facilities. Nebula allows the programmer to "trace"

execution, either on a statement-by-statement or procedure-by- 4

procedure basis, by setting bits 13:14 of the PSW. Proper

setting of these bits will cause a "break" to occur "after the

execution of the specified instruction [all instructions or just

procedure calls and returns] and before a check for pending

interrupts" [3, p.39). When a "break" occurs, control is

transfered to the Supervisor Exception Handler. In concept, this

is one of Nebula's nicer features. However, since no - 4

implementation details are specified, questions arise which, when

answered independently by various Nebula implementors, will lead

to transportability problems: What if an exception or trap

occurs while processing an instruction that would normally cause

a "break"? Will the break occur before or after processing the

trap/exception, or not at all? Will this depend on the type of

trap/exception?

- Arithmetic Status Bits. How are the C, Z, N, and T bits affected

by traps and exceptions? In the case of the EDIV instruction,

"if storage of either Ri or R2 is blocked by the memory

management system, the storage is aborted and the operands are

unaffected" [3, p.81). Are the Z, N, and T bits unaffected as

well? Does the same answer apply to all other instructions?

- Sizes of Certain Parameters. It is essential to the Nebula

architecture that each parameter be associated with a size (1, 2,

4, or 8 bytes). MIL-STD-1862A therefore carefully specifies the
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size of each of the "implicit parameters" to the Supervisor

Exception Handler, etc. Apparently by oversight, however, sizes

for the following are not given: the "priority level" passed as

the single parameter to the software-interrupt-request procedure

[3, p.403; parameters 3 and 4 of the memory-management-trap

procedure [3, p.48].

- Illegal.Divisor. For no apparent reason, MIL-STD-1862A is

inconsistent in its treatment of the Illegal.Divisor exception,

raising serious questions about how exceptions affect arithmetic

instructions in general. For the DIV, REM, EDIV, and DIVU

instructions, MIL-STD-1862A states: "When this exception occurs

the operands are unaffected" (3, p.78, 80, 81, 88). For the MOD

and DIVFIX instructions, however, there is no such comment, and

the description of the LOOP instruction actually implies that

some operands may be modified even if an Illegal.Divisor

exception occurs. In general, when does an exception prevent

operand modification and when does it not? In what sense can two

versions of Nebula be considered the same machine if they act

differently in such cases?
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PART 4 - CONCLUSIONS AND RECOMMENDATIONS

As a document, MIL-STD-1862A is not sufficiently clear, precise,

or complete to be used as the definition of an ISA Standard. It

allows such a wide range of software-visible variations that

transportable programs will be difficult to write and impossible to

certify as transportable. Detecting whether a given program

intentionally or inadvertently utilizes any of Nebula's

implementation dependencies is, in general, impossible.

The feasibility of a software-augmented execution environment

that simulates an implementation-independent "virtual machine"

remains to be demonstrated. It is questionable whether such an

environment can be constructed, however, and almost certain that it

would have to be re-constructed for each Nebula implementation.

MIL-STD-1862A could be enhanced by adherence to the following W

guidelines: 

1) The operation of the machine in all cases must be unambiguously

specified by the Standard, even if implementation dependent.

That is, the Standard must be complete.

2) All implementation dependencies should be made explicit in the

Standard and the range of variability made clear.

3) A design philosophy should be adopted in which implementation

dependency is the exception, rather than the rule. This

requires, at least initially, a completely specified Standard

with no implementation dependencies.

determining what implementation dependencies will be allowed.

These principles should involve primarily considerations of
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costs and benefits, including hardware and software costs for

the full life cycle of a standard machine. Major elements of

the cost/benefits analysis include:

-How much faster and/or cheaper will a machine be if it can

take advantage of the flexibility provided by the

implementation dependency?

To the extent that the implementation dependency is

software-visible, how difficult will it be to detect a given -

program's inadvertent or intentional use of it? Can a

compiler or operating system detect such use? How expensive

will it be to put such detection in the compiler or

operating system? Will such an addition make the compiler

or operating system itself non-transportable?

5) Proposed implementation dependencies should be presented to a

control board for evaluation according to the principles

mentioned in (4). Approved implementation dependencies must be

carefully and completely documented. including a description of

the techniques available for detecting improper use.

The dilemma facing Nebula is a classic one: How to take advantage of

advances in a rapidly advancing field, while allowing "old" programs to

cor.tir.ue working across a wide range of systems. Although well-

intentioned, the current Nebula approach to this dilemma has resulted in

ar. ur.der-specified Standard ir. which the burden of writing transportable

software rests with the programmer. Both DEC and IBM have proven that

there are better approaches.
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The Input/Output subsystem of a computer instruction set architecture

must be considered at least as important as the design of central pro-

cesscr instructions. The I/O interface directly affects such architec-

tural goals such as program portability, security, program verification,

performance (both for multiprogramming and real-time applications), and

fault tolerance. The purpose of this paper is to examine the Nebula I/0

interface as specified by MIL-STD-1862A, with modifications through

31AUG31. The first section presents a summary of the I/0 interface with

emphasis on those areas of concern to a programmer who must understand

the relationships between the Central Processor, I/0 Processors, and

Memory Management Subsystem. The second section details areas of the

I/0 interface specification that are ambiquous or problematic in terms

of meeting the architectural qoals of Nebula mentioned above. The third

section discusses some possible approaches which could be used by desig-
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ners of operating supervisors for Nebula computers which could overcome

some of the problems. The fourth section proposes some changes to

MIL-STD-1862A which, if implemented, would eliminate certain problem -.

areas. The fifth section considers the relative merits of changing the --._

Nebula standard against the potential impact of the problem addressed.

THE NEBULA I/0 INTERFACE

Introduction

The major part of MIL-STD-1862A dealing with the I/O subsystem is con-

cerned with interfaces between the central processor (CPU) and special

purpose processors known as I/O Controllers (IOCs). The standard IOC

nas a limited instruction set but can execute independently of the CPU

and provide a relatively simple interface to a variety of devices.

For the most part, the TOC is assumed to be connected to devices by

1ne f Lhree different interfaces: Parallel Pint-to-Point (PPP) pro-

vides a high speed 16 bit connection to a single device; Serial Point-

to-Point (SPP) provides a slow speed interface to a device using proto-

cols like RS-232; and MIL-STD-1553B (1553B) provides a 16 bit bus

connection between a variety of devices and is widely used in military

applizations. An attempt has been made in Nebula to provide a single

architecture containing enough flexibility to utilize the capabilities

Gf all three types of interfaces.

Physical Memory Address Assignments

I/O Space: The first megabyte of the physical address space is set

aside for use as I/O and CPU control registers. The upper 2K bytes of
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I/O Space is reserved for such processor control registers as: PSW, ASR,

map pointers, context pointers, timers, and OPEX and SVC vector pointers

and limits. The remainder of the I/O Space is used to access or control

either devices or IOCs. Each IOC is allocated a 512 byte block of

registers in I/O Space aligned on an address that is a multiple of

512.(i)

Because the implementation of this portion of the address space is

likely to be much different than program memory, in I/O Space the CPU is

not allowed to generate references which cross register or data item

L boundaries. Also, no IOC program, message, or data access is allowed to

*- I/O Space (access causes a hard memory error or a Memory.error interrupt

from the 10C).

The lower 256 bytes of the IOC register block is for secure data

which untrusted programs should not be allowed to access. Currently

-lefined relisters in this block are:

1. Channel Configuration Register: contains interrupt priority for

attached to the IOC. The register may also contain channel depen-

dent information like baud rate, Remote Terminal (RT) address (for

1553B serial bus interface), or device interrupt priorities (for

parallel point-to-point interface).

2. Program Segment Specifier: sixteen bytes containing sufficient

implementation dependent information such that the IOC may verify

that a channel program instruction or literal access is within the

(1) The block size of 512 bytes was chosen because some implementations
may use 256 for the minimum memory segment size. It was desired to
have two portions of the block be independently mapable so a user
process would not have to be given access to the secure portion of
the register block (see below) but would still be able to perform

direct I/O operations to a device.
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original segment specified with a SETSEG instruction and to perform

-. the necessary relocation of virtual addresses associated with the

* "channel program.

3. Message Segment Specifier: similar to the Program Segment Specifier

" except that it is used to validate/relocate contents of and offsets

from the Message Pointer Register (below).

4. Data Segment Specifier: similar to the Program Segment Specifier

except that it is used to validate/relocate virtual addresses for

IOC instructions that transfer data (except for instructions that

specifically use the message segment for data transfer).

The upper half of the IOC register block contains:

1. !hannel Status: sixteen bits with bits 2 through 15 containing

channel dependent information. Bits 0 and 1 control starting and

stopping the IOC and are discussed later.

2. Channel Program Status: sixteen bits used to indicate the reason

for early termination of a data transfer (Overrun, Data Check,

etc.).

3. Channel Program Counter: contains the 32 bit virtual address of the

next instruction to be executed.

4. Message Pointer: contains the 32 bit virtual address of the current

message. In simple cases, the message contains the virtual

ddresses of data buffers to be used for data transfer operations.

5. Status Word and Vector Word: sixteen bits of flags defined for use

by the 1553B interface.

Other assigned Physical Addresses: Certain physical addresses of inter-

est are located in the first 256 bytes above the I/O Space (starting at
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hex address 00100000). The reserved addresses in this section of memory

should be accessed relatively infrequently so that little performance

impact results from having the values in memory rather than in registers

in I/O Space.

Reset/IPL entry and save area pointers: The entry address of the

procedure to be called when the RESET switch is activated is located at
.- --C '-

hex location 00100040. Location 00100044 points to a doubleword which

contains pointers to the supervisor map and kernel context area to be

used when the procedure is invoked. The IPL process is similar to the

* RESET sequence except that the procedure entry address is provided by

the loaded IPL text.

Device Interrupt vectors: Locations with hex addresses 00100060

through 001000FF are reserved for device interrupt vectors. Each IOC is

assigned a four word interface dependent interrupt vector of the format

sncwn in Figure 1 below. Note that at a minimum, each type of interface

has a separate vector address for program interrupts (generated by the

TOC instruction INT) and for IOC error interrupts. The procedure

invoked has at least one parameter which is the physical address of the L

interrupt vector that was used.

Central Processor interaction with I/O

The Central Processor interacts with the I/O subsystem through the shar-

ing of memory (described above), special instructions, access to IOC .

registers, and interrupts. This section discusses the latter three

areas of interaction.
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+-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Location Parallel Serial PP 1553B

00100Ox0 program input program program "

001000x4 error input error error

001000x8 device output program reserved I...

00100OxC reserved output error reserved .

Figure 1: Interrupt Vector Assignments .
+ I

------------------------------------------------------------------------

SET I/O Segment - CPU instruction: This instruction has two address

operands, a Seg operand that maps to the physical address of an IOC seg-

ment specifier and an Adr operand that specifies a virtual address in

the segment to be used. If the Seg operand does not map to an IOC seg-

ment specifier, a Segment.specifier exception or hard memory error will

result. If protection is enabled, the protection attributes of the seg-

ment containing virtual address Adr are checked. A channel program seg-

ment must have instruction access; message and data segments must have

read/write access. An invalid Adr operand causes condition code bits to

be set indicating the type of error (Z is set for invalid address, N is -"-

set fcr protection violations) and the segment specifier is set to pro-

hibit all accesses. To enable an operating supervisor to easily prohi-

bit all accesses, the virtual address FFFFFFFF is always considered

invalid. As mentioned before, the contents of the IOC segment specifi-

ers are implementation dependent but sufficient to allow an IOC to vali- -

date a virtual address as being within the specified segment and to

relocate the virtual address to a physical address.
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-------------------------------------------------------------------------------

Starting and Stopping I/O: The process of starting an I/O operation on

an IOC is relatively simple. In the general case, the procedure to

start an I/O operation requires the following addresses:

1. Pointer to the first instruction in the Channel Program. This

address also defines the channel program segment.

2. Pointer to the Message area. This address also defines the message

segment.

3. Pointer to the data buffer. This address also defines the data

segment.

4. Pointer to procedure to be invoked in case of an IOC error inter-

rupt.

5. Pointer to procedure to be invoked by an IOC program interrupt.

6. Pointer to the IOC register block, or some indication of the IOC

which is to perform the operation.

Using this information, the following steps can be performed to initiate .

an I/O operation:

1. Verify, using bits 0 and I of the Channel Status Register for the

1OC that the IOC is not active. The first two bits of the Channel

Status Register indicate the current overall status of the IOC.

The CPU sets/clears bit 0 to request the IOC to start/stop the cur-

rent channel program. The IOC sets/clears bit I of the Channel

Status Register to indicate whether it is currently active/stopped. .-

If the IOC is active when the request is made, the program may want

to: 1) queue the request; 2) halt the current I/O operation; or 3)

pass some error indication back to the caller.
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2. Issue the SETSEG instruction for the three segments. If the SETSEG __'

fails for any of the segments, the program may wish to return an

error indication or it could continue and allow the IOC error

interrupt to be taken when the IOC discovers that no access is

allowed to the segment.

3. Place the pointers to the interrupt handling procedures in the

appropriate interrupt vectors (or in a control block accessible to

system provided interrupt routines).

4. Place the Channel Program address and the Message address in the

Channel Program Counter and Message Pointer of the IOC.

5. Set bit 0 of the Channel Status Register indicating that the IOC

should start.

Note that only steps 2 and 3 of the above process require intervention

by a privileged procedure. Once those steps have been performed, a

non-privileged process with access to the upper half of the IC register

block could, with reasonable security, be allowed to start and stop its

own I/O operations.

CPU interrupts: An IOC or device may interrupt processing by the CPU if

the priority of the interrupt request is greater than the priority at

which the CPU is currently executing (contained in the PSW). Interrupts

are treated as procedure calls with the device or IOC (plus IOC inter-

rupt type) determining the fixed location in memory containing the

procedure entry address. All interrupts execute on the Kernel context

stack and the Base bit of the current context is set on. The interrupt

procedure will be considered privileged if the entry in the interrupt

vector pointing to the procedure has bit 31 set on.

11-4.8
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If a device or controller requests an interrupt, it specifies the

interrupt priority (in the range 0-31) and the physical location of the

interrupt vector containing the virtual address of the interrupt proce-

dure. The procedure has access to the physical vector address as a sin-

gle read-only parameter.

IOC requested interrupts may be generated by errors or by the INT

instruction. The procedure invoked is specified in the error or program

interrupt elements of the four word interrupt vector assigned to the IOC

(See Figure 1). When invoked the procedure has access to two parame-

ters: the physical vector address which contained the address of the

procedure; and the interrupt code.(2) The channel program may be sus-

pended if an INT request cannot be serviced because the CPU is executing

at an equal or higher priority.

I/O Processor Instruction Set

In general, IOC instructions are halfwords and are classified as data

transfer instructions or control instructions. The 16 bit instructions

contain an eight bit operation code and an eight bit value that is usu-

ally interpreted as an offset or index in halfwords from the value in

the message pointer register. For the PPP interface, bit 7 of the oper-

ation code indicates that the information to be transferred is data (bit

7 0) or control/status (bit 7 =1).

IOC Transfer Instructions: At the start of a. data transfer operation

the accumulator contains the number of units of information to transfer.

At the end of the operation the accumulator contains the number of units

(2) The interrupt code is the IOC error code for interrupts caused by

TOC errors. For interrupts caused by the INT instruction, the

interrupt code is the value of the IOC accumulator.
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in the original count that were not transferred (the channel program

- status register contains the reason for early termination of a transfer

- operation). For the PPP and 1553B interfaces, a unit of information is

a 16 bit halfword and for the SPP interface a unit of information is an

eight bit byte.

* The following section briefly describes the most general cases of the

IOC data transfer instructions. Instructions used with specific inter-

faces may differ slightly in detail or in functions performed.

* READ - specifies offset in message that is a 32 bit virtual address of

a buffer. The buffer must be in the data segment.

* RDTMSG - specifies offset in message that is the starting location to

receive the information.

* AWRIrE - specifies cffset in message that is a 32 bit virtual address

of a buffer containing that data to be written. The buffer must be in

the data segment.

* WRFMSG - specifies offset in message that is the starting address of

the data to be written.

* WRLIT - the offset is a reserved field. The instruction is followed

by a 32 bit virtual address of the data to be written which is in the

program segment.

* RT2RT - index value into message is a four halfword block used to ini-

tiate transfer between two remote terminals on a 1553B interface and

to store status information at completion of the transfer.

11-4.10

> - -~~~~~~~~~~~~~~~~~~~. .. .- ... ........... ,..-......- . .. i ... ..-........-... .--....-. . , -? .-. , -- .-.-.



Analysis of Nebula Architectural Support for 1/0

IOC Control Instructions: This section briefly describes the IOC con-

trol instructions. The description is designed to give an idea of the

kind of instructions available. These instructions operate consistently

for all types of interfaces.

• LOAD - load accumulator from offset into message.

* STORE - store accumulator at offset into message.

* LOADST - load accumulator from offset into IOC register block.

* IADD, ISUB, IAND, IOR - perform the operation with the accumulator and

the indexed halfword from the message. Place the result in the accu-

mulator.

• LOADL, IADDL, IANDL, IORL - perform the operation with the accumulator

and a I) bit literal following the instruction. Place the result in

the accumulator. The last eight bits of the LOADL and IADDL instruc-

tions are reserved.

L_
• ADDTA - indexed location in message specifies a 32 bit word in the

message that is added to the contents of the accumulator and replaced

by the result.

• LSHFT - the accumulator contents are shifted left or riqht by the

amount specified in bits 8 through 15 of the instruction (interpreted

as a signed shift count).
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* LMP - indexed location in message is a 32 bit virtual address which

replaces the current contents of the message pointer register. If the

new message pointer is zero, the program is halted and bits 0 and 1 of

the channel status register are cleared.

* BRIO, BRNEIO, BLSSIO, CASEIO, BCASE - transfer control within the

channel program based on the contents of the accumulator. BRIO causes .- Ij

a branch regardless of the contents of the accumulator.

* INT - a CPU interrupt is generated at a priority as specified in bits

11 through 15 of the instruction. An IOC error interrupt of Inter-

rupt.priority occurs if the specified priority exceeds the maximum

priority specified in the channel config]uration register. The con-

tents of the accumulator will be passed as a parameter to the invoked

procedure.

* HALT- equivalent to loading the message pointer register with zero.

CONTROL - provides ability to perform interface dependent control

functions for SPP and PPP interfaces.

I/O PROBLEM AREAS

Minor Errors or Omissions

The Nebula specification has suffered some consistency problems as

7hanges are made that are not reflected in all parts of the document.

For instance, although a set of corrections has been issued since the

change to the size of the IOC register block, the description of the

11-4.12
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LOADST instruction for the IOC has not been updated to reflect the new

manner in which it must operate. Also, the description of LOADL and

IADDL indicates that the last eight bits of the instruction are

reserved; the description of IANDL and IORL contains no mention of such

a :estriction although there is no reason to believe the instructions -

are not similar in that respect.

. ..- **.'

The IOC HALT Instruction

The function of the HALT instruction seems adequately performed by the

LMP instruction with a new message pointer of zero. Is the HALT

instruction for the IOC necessary?

The SETSEG Instruction

The description of the SETSEG instruction misses several important

details. The problems became apparent while thinking about the sequence

of operations necessaty to start and stop I/O, and the possible error . .

conditions that would have to be handled.

Operand Access: The two operands of the SETSEG instruction are

described as "address operands" yet one of the operands must map to one

of the IOC segment specifiers in an assigned 1OC register block. Since

address operands do not cause access violations, is it really the desig-

ners' intent to allow a SETSEG instruction to be issued for an IOC whose

register block was covered by a virtual segment with "no access" protec-

tion? An alternative interpretation which would require "read/write"

access seems to eliminate much of the protection afforded by the SETSEG

instruction. Regardless of the interpretation, the term "address oper-

and" is being used in a fashion which is not entirely consistent with

11-4.13
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the spirit of the rest of the specification and a more detailed explana-

tion is warranted.

IOC Active: The description of the SETSEG instruction contains no res-

trictions on issuing the instruction while the IOC is active. In other

sections of the specification, an IOC error of IOC.active is generated

if registers such as the channel program counter are altered during IOC

- execution. Is it an oversight that an IOC error interrupt is not speci-

fied when a SETSEG is executed for an active IOC?

Maximum Priority for INT Instruction

The generation of an IOC error interrupt when the priority in the INT

instruction exceeds the maximum priority seriously affects program port-

ability. The maximum channel program priority is contained in the chan-

nel configuration register. Programs using the IOC cannot easily access

the maximum priority since access would not normally be given to the

lower half of the EOC register block. The priority of a program inter-

rupt is contained in the INT instruction which is in a segment with

"instruction" access and is therefore not easily modified. If the INT

iistruction specifies a priority larger than the maximum priority, an

IOC error interrupt occurs. A program cannot find out what the maximum

priority is and would, at any rate, have difficulty changing the prior-

ity in the INT instruction.

Device and IOC Interrupt Vectors

The ibility of an operating supervisor to be flexibly 'configured for a

particular I/O configuration brings up some problems with the manner in

which the interrupt vectors are specified in Nebula.

11-4.14
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Limitation on Number of IOCs: The area reserved for device and IOC

interrupt vectors is from location 00100060 through 001000FF. This

address range provides for a maximum of ten I/O Controllers to be

attached to a Nebula computer. While the maximum is probably sufficient

for many embedded computer applications, ten IOCs is a serious restric-

tion if the Nebula architecture is ever to be extended to mainframes.

Note that any directly connected devices have to be provided with inter-

rupt addresses further reducing the number of IOCs that may be attached.

Program Visibility of Interrupt Vector: In many circumstances, the

operating supervisor will need to know the address of the interrupt vec-

tor associated with a particular IOC or device. Trusted programs which

are allcwed to perform their own I/O operations and field their own

interrupts will need a method of specifying procedure entry addresses in

the interrupt vectors. The only safe method is to supply this informa-

tion to the operating supervisor which fills in the appropriate inter-

rupt vector -- so long as the supervisor knows the location of the

interrupt vector to be used. Requiring the operating supervisor to be

pre-generated with the location of the interrupt vectors for each IOC

greatly restricts portability of the supervisor and seems unnecessary

* since t'ie IOC must have the vector address available internally.

Reset and IPL Sequences

The Reset and IPL sequences require more specification. It is crucial

that the machine be in a specific state when the reset or IPL routines

*O are invoked. Examples of areas of concern are:

11-4.15
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* The state of the IOCs and devices following a reset or IPL are not

specified ... are they halted or might they be active?

* New kernel context stack and supervisor map pointers are contained in

two words pointed to by location 00100044 ... exactly when in the IPL"

sequence are these values made current?

OPERATING SYSTEMS DESIGN REQUIREMENTS

Impact of Previously Discussed Problems

Many of the problem areas discussed in the preceding text do not seri-

ously affect the design of operating systems for Nebula computers

because the problems relate to ambiguities or lack of detail rather than

design flaws. Careful design of the operating system is required to

meet goals of performance, security, verifyability, etc., but except for

the problems outlined above and the discussion of 1/0 interrupt proce-

dures discussed below, few serious obstacles to this process are seen.

The problems of the maximum priority for the INT instruction and the

limitation on the number of TOCs are of such a nature that there is no

7lear approach to the design of an operating system that would avoid

them.

The remaining problem which can be partially solved is the one of

program visibility of the interrupt vector addresses. The first thing

to note about the problem of the vector addresses is that the interrupt

procedure is passed the physical vector address when the information it

really needs is which 1OC generated the interrupt and why (error or pro-

11-4.16
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gram interrupt). The "solution" to the problem then is to build a cross 4

* "reference table between the physical vector addresses and the location

of the IOC register blocks. This table must be regenerated each time

the location of the interrupt vector is changed and the difficulty of

.. finding errors in this generation process can be time consuming.

I/O Interrupt Procedures

I/ interrupts (and software interrupts) are much different than traps

* and exceptions because the task currently executing may have nothing to

do with the reason for the interrupt. The interrupt is processed by

* switching to the kernel context stack and calling a procedure whose

0 address is obtained from a certain physical location. The procedure

must be present at the same location in the memory map of all tasks, so

in most cases the T/O interrupt procedure will have to be referenced

tirough tile superviso.r map. In a multi-tasking environment, a process

which has been given the ability to initiate I/O operations by directly

manipulating the registers in the upper half of the IOC register block

-: cannot be allowed to handle I/O interrupts from the IOC without impact- "

,. ing scurity. Intervention by the operating system is necessary to per-

form a switch to the task responsible for the I/O before an applica-

ti~cn's 1/0 interrupt routine can safely be given control.

I ... The task switch with associated loading and storing of cached infor-

mation may impact the ability of a Nebula processor to respond quickly

to interrupts, particularly if the amount of cached information becomes

large in an attempt to improve processor speed. To avoid this impact, 4

the operating system would have to provide a more complex (and unfortu-
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nately, more programming error prone) interface to allow a validated

supervisor procedure to handle I/O interrupt processing without requir-

ing a task switch each time.

* . PROPOSED MODIFICATIONS TO NEBULA STANDARD

Clarifications

LOADST: The description of the LOADST instruction of the IOC should be

changed to relect the increased size of the IOC register block. The

suggested change would be to interpret bits 8:15 of the instruction as a

halfword offset from the CCR with bit 8 forced on to prevent access to

0 the lower half of the IOC register block. -- -

IORL and IANDL: A sentence should be added to the description of the

IORL and IANDL instructions specifying that bits 8:15 of the halfwords

containing these instructions are reserved.

-. SETSEG

Use of address operands: The impact of using address operands for the

segment specifier requires more explanation. The suggested change is to

speciFy that there must be a read/write segment mapping the lower part

of the IOC register block and that protection can be provided by setting

the privilege bit in the map entry for that segment.

IOC Active: The TOC is unlikely to perform properly if a SETSEG

-" instruction is issued for one of its segment specifiers while it is

active. Suggest the addition of a sentence specifying that execution of

* a SETSEG instruction by the CPU while the IOC is active (bit I of chan-

nr. status set) shall cause an 10C error interrupt with fault code of ..-

I 1C.A4tive.18
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Maximum Priority for INT

To allow increased program portablity, the INT instruction should be

changed so that if the priority specified in bits 11:15 of the instruc-

tion exceeds the maximum priority in the channel configuration register, -

the maximum priority is used. References to an Interrupt.priority error

interrupt for the TOC may then be deleted.

Device and IOC Interrupt Vectors

Problems of limitations on the number of IOCs and program visibility of

the interrupt vector would be eliminated if the following changes were

made : _ '_
m. When the TOC requests an interrupt, it provides the address of the

IOC register block, the offset in the interrupt vector block to be

used, and the interrupt priority.

2. The lower half of the TOC register block contains the 32 bit physi-

cal address of the interrupt vector to be used.

3. During interrupt processing, the CPU fetches the interrupt vector

address and aids the offset to get the address containing the

interrupt procedure entry address.

4. The interrupt procedure has access to an additional parameter which

is the address of the TOC register block for the TOC requesting the

interrupt.

The changes described above are meant to be as compatible as possible

with the current Nebula architecture and are patterned after the pro-

cessing for SVC and OPEX instructions. S
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Reset and IPL

The state of the machine after the reset or IPL switch is activated must

be completely specified. In particular, the standard should include the

stipulation that all IOCs are halted. Also, to prevent confusion, the

standard should be more detailed in its description of the IPL sequence;

i. e. there should be a sentence stating that the pointers to the kernel

context stack and the supervisor map are loaded into their -espective

hardware registers after the IPL data is loaded but before the control

is transferred to the procedure address specified in the IPL data. Any

restrictions on the format of the IPL data should appear in the stan-

dard.

IMPACT OF MODIFYING THE CURRENT STANDARD

Considering the extent of the recent redesign of the I0C part of 1862a, , ,

it is no surprise that there are some additional problems which need to

be addressed. Adoption of the proposed changes and adding some of the

missing details to the standard should greatly improve confidence in the

portability of operating systems between Nebula computers.

If the proposed changes or similar changes are not made to the Nebula

standard, it will be quite possible that operating systems will not be - . -

transportable between machines that conform to the standard. Since the

operating system is a critical interface between application programs

and the hardware, requiring operating system changes to use different

Nebula computers greatj increases the probability that the "envir.n-

ment" the operating system provides is not the environment required for

the application program to operate correctly.
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The changes proposed in the preceding sections have their primary

impact on the IOC. Considering the recent changes to the IOC part of

the specification (since the release of 1862a), it appears unlikely that

* many of the proposed changes would have a significant additional impact

on the implementation effort. The major change suggested was in the IOC

interrupt vectors; for that change, some care was taken to propose a

scheme compatible with current handling of OPEX and SVC instructions so

that common logic or microcode could be used. P
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1. Introduction

Nebula (MIL-STD-1862) is a 32-bit Instruction Set Architecture

which is being developed for use in embedded computer systems.

JOVIAL-J73 (MIL-STD-1589B) is a high-level language in which

programs are written for these embedded computers. In this

report we evaluate the suitability of Nebula as a target for

applications which are written in JOVIAL. Any unqualified

* references to JOVIAL refer to the language which is described in

MIL-STD-1589B; references to other JOVIAL dialects are qualified.

1.1 Background

Nebula was examined from three basic viewpoints:

.With respect to efficiency of execution for JOVIAL

programs.

2. With respect to ease of compilation into efficient code.

3. With respect to ease of compilation.

Note that these objectives are related, but are different. There

*.. may be an architecture for which it is possble to hand-code- -

I efficient programs but which does not lend itself to easy

", compilation. Similarly, a simple architecture may make it easy 1

to compile code but difficult to generate efficient code.
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It should be emphasized that not only must it be possible to

write efficient programs for a given architecture, but it must

also be possible for the compiler to translate source into

efficient object programs without an undue amount of effort. An

architecture for which a great deal of analysis is necessary to

generate efficient programs may be worse in practice than another

which is worse in theory, but whose potential is more easily

realizable.

Problems which are encountered in typical JOVIAL implementations

are discussed, roughly in order of decreasing difficulty of

implementation on Nebula. In some cases problems which are, in

general, potentially great for other architectures are relegated

to the end of the list, because they pose no particular

difficulties on Nebula.

Areas examined were:

1. Parameter procedures.

2. Truncation and rounding.

3. Parameter labels.

4. Abort statement.

5. Parameter passing and referencing.

6. Data referencing and storage allocation.

7. Bit strings.

8. Character strings.

9. Operand sizing.

11-5.2
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10. Optimization.

11. General Machine Idiosyncracies.

12. Loops.

13. Case.

14. Part-Word Operands.

15. Star tables.

16. Fixed-point Arithmetic

17. Data Allocation.

18. Relationals in Value Contexts.

19. Tight Tables

20. Address Computations (including subscripting).

Several other areas, which have caused problems in the

implementation of other languages, but which are of no great

concern in the implementation of MIL-STD-1589B JOVIAL are also 4

discussed. These include:

I. Parallel Tables.

2. Checking.

- 3. Tasking.

4. Input/Output..L_

4L

1
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1.2 Executive Summary

It is obvious that the Nebula Instruction Set Architecture has

been designed with high-level languages in mind. On the whole,

it is better suited for the implementation of JOVIAL than are

most architectures. Among the features of Nebula which are

particularly well-suited to JOVIAL are:

1. Fixed point operations.

2. Three operand arithmetic operations.

3. Associating sizes with operands, rather than with

operators.

4. Relational operators which generate boolean results.

5. Scale operator.

Areas of Nebula where we see problems or inefficiencies are:

1. Parameter labels

2. Parameter passing and referencing

3. Data referencing and storage allocation

4. Parameter procedures

5. Character strings

6. Bit strings

7. Truncation and rounding

8. Operand sizing

9. Part-word operands

10. Optimization

11-5.4 .*'
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11. General Machine Idiosyncracies

Parameter labels present some serious implementation problems,

because the context stack is hidden from user programs.

Additional instructions to make the manipulation of the context .

stack simpler are recommended.

The problems of parameter passing have to do with passing

parameters by value and referencing up-level parameters. Changes

to facilitate these operations are recommended.

Storage allocation is largely unsupported in Nebula. We feel

that high-level support for allocating data on the stack should

be provided.

Operations on variable length character strings which require

padding present problems on Nebula. The JOVIAL rules for

overlapped moves exacerbate the problems. A suggestion for

additional character string instructions is made.

Nebula provides good support for short bit strings, but less

support for longer ones. The addition of a long bit move is

recommended.

JOVIAL associates rounding and truncation with individual P

operands, but Nebula has global flags which indicate what sort of

rounding is to take place. Also, JOVIAL allows rounding and

11-5.5
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truncation for integer and fixed-point items. Two alternatives

for handling these problems are suggested.

JOVIAL permits part-word operands to be used in expressions.

Nebula provides facilities for extracting and depositing these

operands but does not allow them to be used directly in

* computations. We suggest a method for permitting this.

Features of Nebula such as the multitude of addressing modes,

three operand arithmetic instructions, and the fact that

registers are not passed to the callee, require new strategies

for optimization if full advantage is to be taken of the -

architecture.

Nebula is better that most architectures in avoiding machine

idiosyncracies. There are some minor ones, however, which are

pointed out in this report.

It should be noted that in each of these areas Nebula is no worse

than ordinary general purpose register architectures, and is

better than most. Since we are examining the architecture before

A the machine has been built, we have used a stricter standard for

judging than we otherwise would have to measure the "goodness" of

the -,rchitecture. More high-level support is expected from

* Nebula than would normally be expected from an existing

architecture.
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2. Present JOVIAL Implementations

Before we examine in detail the problems of implementing JOVIAL,

we discuss different architectures and the kind of support they

provide. JOVIAL compilers have been implemented for a variety of .

target machines. MIL-STD-1589B compilers exist for the DEC-10,

IBM370, T1990, 1750A (MIL-STD-1750A) and the Z8002, and are being

* developed for a number of other machines including VAX, and the

PDP-Il. Compilers for other dialects of J73 (MIL-STD-1589 and

MIL-STD-1589A) exist for the Univac 1108 and Collins CAPS, among

others.

Of all of these implementations, the CAPS architecture stands out

as the one which supports JOVIAL most efficiently with respect to

compactness of code. The HIL-STD-1750A is also relatively good.

The machines with the larger word sizes (DEC-10, Univac 1108, and

IBM370) do not fare as well.

There are several reasons for this. Most important is the

efficiency with which it is possible to access operands. CAPS

and the 1750A both provide shorthand encodings for operand

addresses. CAPS is a stack-oriented architecture which addresses

instructions by byte, but data by word. Since it is

stack-oriented, operands are somewhat divorced from operators. A

single byte instruction can be used to access any of the first 16

words of local data in a procedure. Two-byte instructions can

address the first 256 words of data. Page registers are supplied
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so that the references to commonly used data can be shortened.

The 1750A architecture contains base registers and allows certain

operations on dedicated registers and an operand within 256 words

of the address contained in a base register, to be specified in

only two bytes. The machines with the larger word sizes do not .

r Jprovide this sort of optimization. Memory reference instructions

always take a full word or more.

I
Another area in which CAPS excels is that of procedure calls.

Parameters are pushed onto the stack, just as for ordinary

arithmetic operations. When a procedure is called, the local

frame pointer is set up so that the parameters are in the i

callee's local frame. In the called procedure, parameters may be

referenced as if they were local data. Upon return from a

procedure, the requisite bookkeeping to restore the caller's -

context is performed by the hardware.

11-5.8
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* 3. Nebula vs. Other Architectures

Since Nebula is an Instruction Set Architecture, rather than a

machine, it is not meaningful to speak of its efficiency with

respect to speed. Different implementations may have performance

characteristics which vary considerably. It is meaningful to

- discuss compactness of code, however. As well as having a

bearing on how much memory is required for a given application,

it provides some clue as to how fast an implementation would be

relative to comparable implementations of different

architectures, since memory bandwidth is often a limiting factor

in machine speed.

The Nebula architecture is more regular that either CAPS or the

1750A, but in some respects it is also less efficient for

implementing JOVIAL. Both CAPS and the 1750A gain an advantage

in terms of space because they use assumed operands. On CAPS

only operands which are referenced from memory need be specified,

because it is a stack architecture. On the 1750A the dedicated

registers need not be specified, and base registers are

restricted to a subset of registers. This makes for a compact

encoding for some common operations.

CAPS is also more efficient with respect to procedure calling and

4 parameter passing, than is Nebula, because value parameters and

space management are both handled automatically. Nebula's

parameter passing mechanism is more efficient that the 1750A's.

11-5.9

I



AD-Ai5i 84i NEBULA INSTRUCTION SET ARCHITECTURE (ISA) EVALUATION 3/4
1U) DIGICOMP RESEARCH CORP ITHACA NV R D ARNOLD ET AL.

SEP 84 RADC-TR-84-i98 F3@662-80-C-0279
UNCLSSIFIED F/G 9

mhhmmhhhmmhus

I mhhhmhhhhmmsI



KU11 I.8 11.

0 1.5 1 A

1111 ___ 1111.6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A

*~ 5 5 5wW,

..........................................



Jovial/Nebula Suitability Report 10/6/81 ..

Both of these architectures suffer from the fact that value

parameters must be explicitly copied into local space, although "

for small procedures, value parameters could be kept in the

1750A's registers.

Nebula is more efficient than the two architectures mentioned " -- -

" with respect to operands which require complicated address

calculations. In both the CAPS and the 1750A the calculations

must be done explicitly, while in Nebula they are part of the . ,

operand addressing mechanism.

Nebula is also more efficient for handling large programs than

either of those architectures. CAPS has a somewhat awkward

universal addressing scheme which must be used to reference code

or data which is not in the same 64K.

Architectures such as the DEC-10 and the IBM 370 are not nearly

as good as Nebula for compactness of code due to several

factors. Nebula provides short address forms for data operands,

and permits branches to be made relative to the program counter.

Operand references and short relative branches occur often in

computer programs, so the savings provided by short forms is

significant.

Another advantage that Nebula has over these two architectures is

that it provides more memory-to-memory operations. Since the

expressions which appear in programs are typically simple
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[Knuth7lTanenbaum781, memory-to-memory operations are desirable

[Myers78]. Based on statistics obtained by hand-compiling the

mix of statements given in [Bloom74], we estimate that Nebula

code may be more compact than code for the PDP-10 or IBM 370 by a -

factor of 2. Although this statement mix is compiler-oriented, I -A

rather than application-oriented, it is likely that application

code would show a similar degree of compression.

Nebula is like the VAX architecture in many ways. Thus, it seems

reasonable to believe that the two would show comparable code

compactness. Nebula has a number of advantages over VAX with

respect to JOVIAL. The most important is that data allocation in

Nebula has a better correspondence to JOVIAL than does that of

VAX. This is a serious problem in VAX for JOVIAL

implementations. It is discussed in detail in chapter 4. Another

advantage is that the addressing modes in Nebula correspond more

*" closely to those found in JOVIAL programs. This is particularly --

true for based or parameter tables, where indexing must be

applied after indirection. The parameter passing mechanism is

slightly more compact in Nebula than in VAX. Also, the fact that

sizes are associated with operands, rather than operators allows

morc efficient code to be generated.

On the whole, Nebula is better suited for supporting JOVIAL -

programs than are virtually all other current architectures. U

There are some inefficiencies, but they should not be -

particularly difficult to remedy.
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4. JOVIAL Implementation Issues

For each of the language-related areas below, we discuss problems ,2'-."

which arise in implementing JOVIAL for typical targets, and how

well Nebula supports those language features. If we feel that r.

better support could have been provided, we analyze the effects

of the problem and recommend modifications to Nebula to correct

the problem, or sketch a way around the problem. In certain

cases the solution to one problem affects the solution of

others. Our recommendations for these related problems are

collected together in section 7.

4.1 Parameter Labels

JOVIAL allows labels and procedures to be passed as parameters.

In both of these cases a reference to the formal parameter is a

reference to the actual parameter in the environment in which it

was originally passed as a parameter. This implies, for example,

that a branch to a parameter label may be used to jump part of

the way out of a recursion. For this reason, the stack pointer

must be passed, along with the value of the label itself, if the

goto is implemented as a branch directly to the label. If a

display is used for up-level references, it is necessary either

to save a copy of the display when the label is passed as a

parameter, or to unwind the stack and restore the display to its

11-5.12
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state at the call which passed the label.

An alternative implementation is to pass a flag back to the

caller to indicate whether a branch has occurred. Extra code

must then be generated in the caller to branch, based on the

value of this flag.

We are unaware of any hardware which provides the high level

support required by JOVIAL for parameter labels. Some

architectures such as CAPS allow branches to parameter labels,

complete with stack unwinding, but the branch is always to the

occurrence of the label in the most recent invocation of the

procedure containing it. This is not necessarily the correct

one, according to JOVIAL rules.

One of the most difficult problems in implementing JOVIAL on

Nebula concerns the handling of label parameters. These problems

arise because the context stack is hidden from programs executing

in user mode, and the fundamental differences between the

semantics of parameter labels and Nebula exception handling

mechanism. The differences are these: exception handlers are

statically associated with procedures, but parameter labels are

dynamically associated with environments; and, there is one

exception handler for a procedure, but a number of label

parameters may be passed for one call. When an exception is

raised, the most recent exception handler is invoked, but a label

parameter may refer to the label in a previous invocation of the
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procedure. When a goto to a parameter label is performed, both

the context stack and the data stack must be trimmed back to the

proper level.

As described above, it is relatively easy to restore the data -.

*' stack to the proper height, if the stack top at the call is saved

with the label parameter. However, the user program has no . . .

direct mechanism for setting the context stack back to its height

at the call. It is possible to create an exception handler for

each procedure which passes a parameter label, to raise a

parameter label exception at a goto parameter, and to check the

data stack level at the handler, to determine if the exception

needs to be reraised to get to the proper stack levels. The only

problem here is that the stack height taken from the formal label

parameter must be passed back from the point of the goto, back to

the exception handler. This could presumably be done by storing

the pointer in a global cell.

Although it is possible to implement label parameters on the

current Nebula architectures, it would be useful to introduce

some additional instructions to make the process simpler, and the

code more compact. These instructions are: get context (GETCON)

and branch with context (BRCON). Get context would return a

context marker into its operand. This marker could be

implementation dependent. Using it as an operand in a context

other than where a context marker is required would produce

unpredictable results.
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Branch with context would take two operands, an address operand

and a context marker. Executing a BRCON would cause the context

stack to be popped to its state when the context marker was

created. The next instruction executed would be taken from the

location specified by the address operand. Note that a

displacement is not sufficient for this instruction, since the

label is execution-time variable.

4.2 Parameter passing and referencing

JOVIAL allows the programmer to specify the method by which

parameters are passed: by value, by reference, or by result.

Most machines do not provide such support with respect to

parameter passing, letting the compiler use general purpose

primitives for this purpose. Some architectures which support

stacks, such as CAPS, allow parameters which have been pushed L

onto the stack to be referenced as local data within the callee.

The most efficient way of passing parameters is highly dependent

on the particular architecture, but some generalizations can be

made. The compiler is often required to generate a prologue

and/or epilogue in the called routine for the purpose of copying

value parameters in, and reference parameters out. Whenever

possible copying should be done by the callee, rather than by the

caller, because calls outnumber procedures.

11-5.15
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Nebula provides some high-level help in passing parameters but

not in the full generality required by JOVIAL. The Nebula

parameter passing mechanism is equivalent to passing all

parameters by reference; value and result parameters are not

handled directly. This is not a big problem, however, since

value parameters may be moved into local -space during the

prologue, and result parameters may be moved out during the

epilogue. This does imply, though, that return statements in the

JOVIAL source be translated into branches to the procedure

epilogue, rather than into Nebula return instructions.

Generating prologues and epilogues and handling returns in this

manner is common and poses no great problems, but it does become

more serious with small procedures, however, where

* prologue/epilogue overhead can become a significant percentage ofj

the entire procedure in both space and time.

- (In Ada formal parameters cannot always be moved directly into

the actuals by epilogue code, due to constraint checking

requirements [Davis8l. It would be possible to pass

compiler-generated temporaries for those parameters whose

constraints did not match those of the formals, and to copy the

returned values from those temps to the actuals in the caller.

This would not be a bad strategy if the constraints usually were

compatible, but would double the number of moves if the

rconstraints were always more stringent for the actual

parameters.)
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One problem which is potentially major is in referencing up-level

parameters. Since the context stack is protected from user

programs, it is not possible to reference up-level parameters in

a straightforward manner. It would be possible to pass the

up-level parameters on to the inner procedures in which they were

referenced, but procedure parameters would complicate this

process. Another possibility is to copy the parameters or their

addresses into local storage.
ri

The CALL mechanism alone would not be sufficient except when the

compiler could be sure that there were no up-level references to

parameters; determining this would, of course, require extra

analysis by the compiler. Note, however, that in JOVIAL this

analysis is always possible; in Ada it is impossible in the

prcsence of separate compilations (DaviS8l].

If too much additional overhead is incurred due to procedure

calls and parameter passing, JOVIAL programmers may be tempted to

sacrifice readability for efficiency, by using global variables

* or by avoiding procedure calls altogether.

- tUsinc a bit mask in the procedure header to indicate the

parameter passing mechanism should be considered. To be

compatible with JOVIAL parameter passing, at least four modes

need to be provided: copy in, copy out, copy in and out, and

reference. These correspond to BYVAL input, BYRES output, BYVAL

output and BYREF parameters.

11-5.17
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Recommendations for a mechanism to allow references to up-level

parameters are discussed below under "Operand Addressing'.

4.3 Data Referencing and Storage Alilocation

JOVIAL allows static or dynamic allocation to be specified for

data which is declared in procedures. Thus, there are implicit

requirements on the data accessing mechanisms of the target

machine.

The requirements with respect to recursivity and reentrancy in

JOVIAL are very much like those of Ada with but a few

exceptions. The most important have to do with label and

procedure parameters, which are discussed in Sections 4.1 and

4.4. The other important difference is that JOVIAL procedures

may be recursive, reentrant or neither. This is actually a

relaxation of the requirements for individual procedures because

it permits implementations which are recursive but not reentrant,

or vice-versa. However, the net effect on the architectural

requirements is the same.

Recursion is implemented by means of a stack. JOVIAL, like Ada,

allows nested procedures and up-level references to data declared

in containing scopes. Parameters to enclosing procedures may be

referenced, as well. There are several ways in which this is

11-5.1i8
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done. One is through the use of a display. This allows up-level

references to be made relatively efficiently, but requires

additional work at proc entry or proc entry and exit, depending

on how the display is implemented. An alternative is to search

through the static links at references. This makes procedure O_

calls cheaper, but references to up-level data more expensive.

Hybrid methods have also been used [Hawkins63].

On most machines there is little direct support for recursion.

Typically, scalars are referenced by using indexed instructions,

and the local frame pointer must be explicitly added to the

subscript for referencing tables. (The IBM 370, which allows an

index and a base register in the same instruction is a notable

exception.) Some stack-oriented architectures such as the CAPS

and the Pascal Microengine do provide good support for

recursion. The Motorola MC68000, which is a more conventional - -

architecture, has instructions (LINK and UNLK) which assist in

allocating and deallocating local data.

Reentrancy presents some different problems. Since reentrant

procedures may be executed concurrently by different tasks, it is

necessary that data accesses refer to different storage locations

fol different threads of control. There are different levels at

which programs may be reentrant. Any routine may be sharable onK
hardware such as the DEC-10, which has code and data base I 6

registers which are hidden from the user. If the system uses the

same code base Lut . 61ffcrent data base for different tasks,

,, , .* ,.* .. .. . .. . " - -'* . . -* *. * .. * . *. * . .- .- - -,., -. ., .' - - . . . , . ., . . .
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reentrancy is achieved. A similar effect can be achieved by -.

altering the page map on systems which provide virtual memory.

If such hardware support is unavailable, reentrancy can be

achieved making all data references relative to that address.

This approach, like the one discussed for recursive procedures,

requires, on most machines, extra computations to reference table

entries.

Nebula does provide some support for recursion, in the form of

the stack pointer register and the stack oriented instructions

(push and pop). The addressing modes are certainly adequate for

supporting recursion, although having an address mode which

assumed the existence of a local frame pointer could save some

space. (It would then be possible to access a certain portion of

the local frame with a one byte operand specifier.)

Up-level references are not very well supported, for several

reasons. There is no direct support for a display or for

fcllowing the links. In addition, because only the stack pointer

is inerited from the caller, it would be more difficult to keep

the display or a pointer to the display in registers.

11-5.20
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4.4 Parameter Procedures

In the general case, parameter procedures present potentially

greater problems than do parameter labels. The environment must

be recorded, in order to implement calls to parameter procedures

in accordance with JOVIAL since they (parameter procs) must be

executed in the environment in which they were passed. The

actual method used to achieve this varies according to the method

used for up-level referencing, but one common way to implement it

is to copy the display at the point at which the procedure

parameter is passed, and to pass the copied display along with .
the parameter. Another possibility, if up-level references are i

made using the static links, is to pass a pointer to the current

stack frame along with the procedure parameter, and to mark the

stack so that up-level references from within the parameter

- procedure will bypass those stack frames between the -parameter

proc's stack frame and the one in which it was created.

j6
Nebula rovides no special support for the implermentation of

parameter procedures. Our main concern is that if the

zarchitecture is modified to provide support for up-level

* references for Ada, that the changes may be incompatible with

JOVIAL, because Ada does not permit procedures to be passed as

parameters. If a local storage allocation mechanism is added to

Nebula, and the methods of data accessing are hidden from the

* user program (in a manner analogous to that currently used for

parameter references), it may be impossible to implement

I-5.21
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parameter procedures, unless special facilities are designed in

to the architecture.

p. - ." .1

&6

4.5 Character string operations

JOVIAL allows moves to and comparisons of character string

operands which are not of equal length. A further complication

is that the byte function allows strings, whose lengths are not

known at compile time, to be manipulated. Although many machines

support character moves for equal length operands, there are few

(VAX is a notable exception) which provide an efficient way of

implementing moves for operands of unequal length whose lengths

are not known at compile time. An inline implementation of such

a move would require taking the minimum of the two lengths,

performing the move and then filling with blanks if the receiver

is longer than the source. Alternatively, if the operands do not

overlap, the destination could be filled with blanks first, and

the source value moved in later. Assignment is further

complicated by the rules for overlapped move (see below). Unless

the hardware gives the correct results for an overlapped move or

unless it can be determined that fields do not overlap, the

compiler must generate an extra move to a temp, control the order

in which bytes are moved, or generate a subroutine call. This

can require extensive analysis, if worst-case code is to be

avoided.
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Nebula gives good support in the form of the move block (MOVBK)

instruction, for moves in which the source and sink are the same

length. MOVBK together with move multiple MOVM provide fairly

good support for moves of constant length where padding is

required. However, the support for moves where the source and

sink may differ in length, or one is of variable length, is only

moderate. The remarks made above with respect to variable length

moves apply to Nebula. An added complication is the fact that

move multiple takes an unsigned count. This means that the fill

,' count must be computed as MAX(length(sink)-length(source),O) or

that the MOVM be skipped if the fill count is negative.

Since it is difficult to generate efficient code for character

" moves and compares which are potentially overlapped and which

involve variable length operands, we recommend that instructions

" be added to Nebula to facilitate these operations. These

* instructions should allow, at the very least, lengths and

". addresses to be specified for the two operands. Additionally, it

*. is desirable to allow a first byte to be specified. Although the

. first byte can be subsumed into the address calculation,

specifying it separately corresponds more closely to the JOVIAL

-0 language usage, and allows more efficient coding of accesses to

subscripted character strings. JOVIAL only provides blank

filling, but it may be desirable to allow a fill character to be

* specified, if such filling is supported at the source level by

other languages for which Nebula is to be used.

-'I
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Move characters (MOVCHS) should perform truncation or filling

with blanks on the right, as appropriate. The instruction should

provide for overlapped source and sink, and give the same

results, whether or not the two fields are overlapped. Since the

instruction execution time is potentially long, the instruction _A

should be interruptable.

Compare characters (CONCHS) should perform a comparison between

two character strings, as if the shortened had been blank padded

on the right to the length of the longer. Overlapping fields are

not an issue here.

Overlapped Move

The semantics of JOVIAL assignment require that the fact that the

source and the sink overlap not affect the assignment. This

means that unless the target computer performs overlapped moves

in a manner which is consistent with JOVIAL, or unless the

compiler can determine that overlap is impossible, it must
generate extra code. This code may take either of two forms:

1. The compiler may generate code to select the direction

of the move, or more simply,

2. The compiler may move the sink to a temporary, move the

source to the sink, and then move the temporary to the .,..-

source.

.% 'c
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Alternatively, a subroutine call could be generated.

Since move block (NOVBK) is defined so that overlapping operands

do not affect the result, overlapped moves are not a -problem in -°..""

Nebula, provided that the operands are the same length, or are of K..1
constant length. Recommendations for handling overlapped moves

are discussed above under "Character String Operations".

4.6 Bit strings

The maximum length of a JOVIAL bit string is MAXBITS, an

implementation parameter. Because MAXBITS determines the maximum

allowable size for table entries, any reasonable JOVIAL

implementation will choose MAXBITS to be significantly greater

than the number of bits in a word. This causes problems on many

machines because normally operations on bits are only supported

in the hardware for word-size or smaller operands. Although some

machines, such as the VAX, allow bit addresses to span word

boundaries, they normally do not support bit operations on bit

strings which are longer than a word.

A similar problem is presented by the bit function when it is

applied to large operands, unless it is known at compile time I

that the number of bits is small. Code can usually be generated

in line for applications of the BIT function to operands which.
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are known to be contained in a word. The code sequences

generated for the BIT functions with a constant first bit and

number of bits are identical to those generated for part-word

operands. The sequences for variable first bits and number of

bits typically involve shifts or special extract or deposit

. . ,.-

instructions if they are present in the hardware.

Nebula provides good support for BIT functions applied to word

size or smaller operands, or BIT functions whose first bit and

number of bits are such that the results are guaranteed to be

* byte aligned and an integral number of bytes long. Support for

longer bit strings is only marginal. Although it would be

possible to generate code to perform long variable bit moves

•. j . -°. '.

inline, it most likely would not be done in practice, because the

code sequences would be rather lengthy. It is likely that a

subroutine call would be generated. This would mean that there

would be a threshold size for bit strings, above which they were

more inefficient. Although it would be convenient for the

compiler to be able to generate code directly for the various

operators which can be applied to long bit strings, the payoff in

terms of efficiency in actual practice would be quite small,

except in those rare programs which made heavy use of those sorts

of operations. Rather than proposing that all instructions be

applicable to arbitrary bit operands, we suggest a more modest

addition to Nebula, namely long bit move and compare

minstructions. The operation described here satisfies JOVIAL

semantics; support for other languages may require a

ofoeain.Rte6hnpooigta l ntutosb ..
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generalization.

The proposed instruction "Move Bits' (MOVBTS) moves the contents

of one bit field to another, padding on the left with binary

zeros, or truncating on the left as appropriate. There are six

operands to this instruction; for each of the source and sink, a

pos, size and base are specified. These are calculated as in the

bit field instructions, but the size restriction is removed.

Since this means that the instruction potentially takes a long

time to execute, it must be interruptable.

Another proposed instruction "Compare Bits" (CMPBTS) compares two

bit strings. The shorter is padded on the left with zeros.

Although JOVIAL does not permit bit strings to be compared for

ordering (only equal and not equal are permitted), it would make

sense to define the comparison so that it sets the N flag bit if

the first operand is logically less than the second. This

* instruction would have the same operands as MOVBTS.

,-.* 4.7 Truncation and Rounding .-- A

- JOVIAL contains requirements for truncation and rounding which

* are not often supported in hardware. Users are allowed to u
specify rounding or truncation towards zero or negative

infinity. The specifications may be associated with specific

!-4
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items of any numeric type (integer, fixed point or floating

• point). Thus, all three types of conversions may appear in a

single program.

Most hardware does not support the three types of length

reduction called for by JOVIAL. Items which use the type

implemented in the hardware are handled efficiently. Subroutine :

calls must often be generated for the operations which are not

directly supported.

Nebula provides good support with respect to the types of

rounding supplied; the three mentioned above are handled and

there is round toward positive infinity, in addition. However,

the type of rounding is determined by the flag bits in the

Auxiliary Status Register (ASR), and is not associated with the .

result field as is required by the language definition. The

desired results could be obtained, however, by altering the ASR

prior to storing the result. This would increase the size of the

code generated, though, and would tend to discourage heavy use of

rounding and truncation.

We have several recommendations regarding ways to make Nebula

truncation and rounding more usable for implementing JOVIAL.

First, the fixed point operations (MULFIX, DIVFIX and SCALE) "

should round or truncate in a manner consistent with the floating "-

point operations. (This is to say, if the ASR is used to

indicate whether rounding or truncation is to occur, then it

1 5
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should also be used for fixed point. However, it may be

advisable to have a separate set of bits to control fixed and

floating rounding and truncation. We will suggest alternative

methods below.) JOVIAL requires truncation toward zero and

negative infinity as well as rounding. Since truncation toward

positive infinity is included in Nebula for floating point

numbers, it should be allowed for fixed point, also.

Another recommendation is that there be a convenient way to

locally change the rounding. We have two suggestions as to how

this could be done; which one should be implemented depends

largely on the availability of op codes. From the JOVIAL point

of view, it is desirable to be able to specify the rounding and

truncation for each operation. For example, rather than just

having a move floating instruction, there would be move floating

and round, move floating and truncate to zero, etc. This would

have to be done for all operations which required rounding or

truncation. The disadvantage of this approach is that the number

of such op codes is quadrupled (although JOVIAL would permit

rounding to positive infinity to be omitted).

*Q Another approach which is not as efficient or esthetically

pleasing, but which is more conservative of op codes, is to allow

a flag which specifies the type of rounding, preceding operations

which perform rounding or truncation.
- ,

It would also be possible to have specific rounding operations

11-5.29
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which followed arithmetic operations, but this is less

satisfactory since precision may already have been lost.

4.8 Operand Sizing

JOVIAL programmers are allowed to specify sizes for items. This

implies that items in densely packed and specified tables must be

extracted before they can be used in computations. On most

machines support for such operations is limited, consisting of

shift and logical operations. The problems associated with

packed and specified table items are discussed under "Part-word

operands".

On byte-oriented machines it is common even for scalars to

require sizing if they are allocated to storage units smaller

than a word. The fact the JOVIAL associates sizes with data, but

machines generally associate them with operators, causes extra

code to be generated to convert all of the operands of a given

operator to a common length.

Nebula is much better than most machines with regard to allowing

operations to be performed on different sized operands, because

sizes are associated with operands, rather than with operators.

In the design, however there is one potential pitfall, which

applies to languages such as Ada as well as to JOVIAL. Consider
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the following statements:

S16 - Us + S16;

S32 - U8 + S16;

Where S and U indicate the signedness of the operands and the

integers give their sizes. If the first addition is performed

using signed addition (ADD) and the value of U8 is greater than

127, U8 will be sign extended and the answer will be incorrect.

If unsigned addition (ADDU) is used, the correct answer, is

obtained for the first statement, but not the second if S16 is

negative, since S16 will not be sign extended.

One solution to this problem is to allocate two bytes for items

which are declared U 8, but this is wasteful of space. The

"correct" solution would be to associate the sign with the

operand rather than the operator, but this would pose coding

problems for the operand specifiers.

4.9 Part-word operands

JOVIAL permits the user to specify part-word operands in

dense-packed and specified tables. These operands may be used in

any operations which are appropriate to their data type. Support

for such operands is typically quite limited. In very few cases

11-5.31 6
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is it possible to use such operands directly. (Compare field

(CMP) on the VAX is one example.) It is almost always necessary

to extract operands first. In addition, there is usually not

very much hardware support with respect to extraction, which

normally must be performed using various combinations of shifting --

and masking instructions. Some machines, such as the VAX, do

have extract field instructions.

Nebula is better than most machines in this regard, although

part-word operands must still be treated specially. Support for

single bit operands is relatively good with clear, set, invert,

and test operations available, but there is no specific operation

for setting a single bit to a variable value. (Store bit field

(SBF) can be used, but it could have been used for clearing and

setting bits also.)

Support for operands whose size is bigger than a bit but smaller -'

than a word consists of the store bit field (SBF) and the load

bit field (LBF and LBFS) operators, and numerous instructions

which handle byte and two-byte operands.

Code for part-word operations on Nebula would be somewhat less

efficient than it could be, due to the fact that it is necessary

to load, compute and store rather than to perform the operation

directly to the target. Our recommendations for improvements in

this regard are discussed below under "Operand Addressing".

11-5.32
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4.10 Optimization

Although optimization is not required by the language

specification per se (with such exceptions as short circuit

evaluation of logical operators), the nature of the tasks for

which JOVIAL is used require code which is economical with

respect to both time and space.

The problems of generating good code are compounded by poor

machine support for high level language constructs, since special

cases require additional analysis by the optimizer or the code

4 generator.

Since Nebula is a relatively regular architecture there are fewer

special cases than for most machines. There are a number of

machine features which do require extra analysis, if the

optimizer is to take advantage of them. The two most important

are the three-operand operators and the large number of

a cdressing modes.

Three-operand operators make it easy to generate code for

statements like: .

A = B op C;

4 6

in the absence of common subexpressions. However, when common

subexpressions are to be considered, the optimizer must decide

I T
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whether it is better to compute the value in a register (or temp) -

or to compute it directly into A. On a machine where all -

computations must be done in registers, this is not an issue.

The large number of addressing modes in Nebula provide additional _

opportunities for optimization. Since it is possible to save

three bytes each time a byte offset is used in place of a word

offset, it behooves the optimizer, not just to use short g

addresses where they happen to occur, but also to create 7

additional opportunities by loading base registers.

Again, this is a feature which can be ignored by any compiler

which chooses to do so, but which can allow a considerable saving

to be made in terms of program size.

4.11 General Machine Idiosyncracies

Many instruction sets, particularly those for older machines were

apparently designed with insufficient regard for generating code

for high level languages including JOVIAL. The architectures

contain numerous examples of instructions which do not correspond

well to operations in high level languages.

Machine idiosyncracies take a variety of forms. One of the most
common, and one which complicates code generation considerably is

1 .
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inconsistent use of registers. Most machines with index

registers do not allow register zero to be used for indexing.

" Other machines have requirements for the use of double registers

or register pairs for certain instructions, typically

multiplication and division. Other machines require that

specific registers be loaded prior to the execution of certain

instructions. These peculiarities make it more difficult to .--.

*" generate good code.

Another common irregularity is the restriction of addressing

modes for certain types of instructions. Examples of this are

I Move character (MVC) on the IBM 370 (only a single register may

be used) and the double precision instructions on the

.- MIL-STD-1750A (only register and direct addressing are allowed).

For a more complete discussion of this issue see [Wulf8l].

Nebula is less idiosyncratic than most architectures, but is not

perfect in this regard. Some operators such as XOR, MOD and REM I

_ appear only in the three address form while other similar

operators such as AND, OR and DIV appear in two and three operand

forms. This requires that these operators be treated specially

I by the compiler, but does not have a noticable effect on the

JOVIAL programmer. We recommend that, unless there is a severe

shortage of op codes (which doesn't appear to be the case with

less than 128 presently assigned) that both the two and three

operand variations be allowed for XOR, MOD, and REM.
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Increment and decrement are not symmetrical. It is possible to

increment by 1, 2, 4 or 8 but only to decrement by 1. -.-E

Procedure descriptions are required to be word aligned. This

causes extra work for the compiler and linker.

The effect of moving 64-bit items to registers is not clearly

specified in the Nebula definition. Section 5.4 states that

register operands shall be word (32 bit) size". This would seem

to indicate that 64-bit operands either cannot be moved to

registers, are truncated to 32 bits, or require two registers.

Any of these alternatives would require special handling for such

operands; this would complicate the compiler. We recommend

defining the register set so that, as a minimum, 64-bit floating

point operands can be loaded.

4.12 Relationals in value contexts

Relational operators may appear in boolean expressions in either

flow of control or value context (i.e., when a relational

operator appears in an assignment statement). Normally, there is

good support for the flow of control case and it is possible to

generate efficient code for IF statements. However, most

machines do not provide good support if the value of the boolean

needs to be generated, as in a boolean assignment.

1I-5. 36
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JOVIAL introduces an additional complication in that it requires

that a single bit logical expression be computed using short -.-

circuit evaluation. The way this is achieved for most

architectures is to translate a statement like:

A -B C or D E;

as if it had been written:

T 1 B'';"

if B = C; goto 1;

if D=E; goto 1;

t = lB '0';

1: A T;

Nebula offers a means for converting condition codes to boolean

values. This makes it simpler to generate code for single

boolean assignments such as:

A =B =C;

However, not much help is provided for the more complicated cases

like the one shown above.

These difficulties are more the result of the language 41

definition, than of Nebula. For this reason we recommend no

change with respect to the short circuit evaluation.

I . 9 6

44
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4.13 Case

- Many architectures furnish no special support for the case

statement. This is not a big problem for integer selection,

because ordinary conditional and indexed branches are sufficient .-

to implement case statements without an unreasonable loss of

, efficiency. JOVIAL also allows character and bit type

selectors. These present more of a problem, since the range of

possible values may be too great to allow the use of an indexed -

jump.

Nebula's case operator provides good support for CASE's with

integer and status selectors.

*"':.. 4.14 Loops :"11

Although a number of machines provide some degree of support for

loops, JOVIAL loop statements often do not map easily onto the

instructions which are intended to provide this support.

One common problem is presented by "increment (decrement) and

branch" type instructions. Normally, the decision on whether to

. branch is made based on a comparison of the counter with zero. -i
'" Unless the termination condition can be mapped into a test :':!

against zero, these special instructions are not usable.

11-5.38
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Another problem is that loop instructions are often applicable

only to testing at the bottom of a loop, (ala FORTRAN), since

they are of the form "increment (decrement) and branch". JOVIAL

semantics require that the condition be tested before the loop is

executed for the first time. The compiler can move the test to

the bottom of the loop if the loop is known to be executed at

least once (as indicated by constant bounds), but if the loop

bounds are variable, either an extra test must be generated, or

else the increment must be subtracted from the initial value so

that when the special instruction adds the increment, the correct

initial value will be checked against the limit.

JOVIAL presents several additional complications. One is that

there are a number of rather general forms of loops. The WHILE

loop is more or less standard and presents no particular problems

as far as implementation is concerned. The FOR loop which uses a

counter (BY phrase in JOVIAL) has a more general termination

condition than is normally encountered. Any boolean formula may

be used as the termination condition; the condition is not

limited to the relation between the loop variable and some

numeric value. Thus, even those machine instructions which allow

the loop variable to be tested against an arbitrary value do not

support JOVIAL loops in their full generality. JOVIAL has

another form of FOR loop which is relatively uncommon. The THEN

clause specifies an expression which is to be reevaluated and |

assigned to the loop variable at the end of each iteration

through the loop. We are unaware of any loop instructions which

11-5.39
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support this construct, and it is unlikely that special

instructions would be particularly helpful.

Another minor complication is that JOVIAL defines the value of

the loop variable outside the loop in cases where the loop

variable is declared explicitly. This means that machines which

suppress the increment at loop termination will not conform to

JOVIAL loop semantics unless additional code is generated by the

compiler.

Nebula provides somewhat better support for loops than most

architectures do, chiefly because the increment (decrement) and

branch and the loop instruction allow limits to be specified.

These instructions do, however, give an incorrect (according to

JOVIAL semantics) value for the loop variable upon exit from the

loop. This would require either an extra instruction to add the

increment once more, or analysis by the compiler to ascertain

whether the loop variable's value was required subsequently. The

remarks about checking for loop termination at the top and bottom

of the loop apply to Nebula, also.

We recommend that the loop instructions be modified so that the

loop counter is incremented, regardless of the outcome of the

test against the limit.
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4.15 Tight tables

Tight tables (those with multiple entries per word) are usually

poorly supported by target hardware. On a typical machine, it is

necessary to perform a division of the subscript by the number of

entries per word in order to obtain the number of the word which

contains the entry and the number of the entry within that word.

Then, the appropriate entry must be extracted from the word using

one of several possible extraction sequences (see part word

data).

Nebula provides good support (load bit field instructions LBF and

LBFS) for the extraction itself# but less support for the address

calculation. In fact, the support for the address calculation

itself is slightly worse than that found on most machines,

._ because division and remainder are separate instructions, whereas

it is common for integer division to produce both a quotient and

a remainder.

It is unfortunate that the language requires an integral number

of entries per word, since it is easier to generate code for

Nebula when the word boundaries are ignored. In such a case, the

load bit field operations would be sufficient.

Nebula does provide good support for tight tables when an

integral number of entries fit exactly in a word, because the

load bit field operations allow full sized integers for the "pos"

11-5.41

............ *,



- - - - - - - • - ,

Jovial/Nebula Suitability Report 10/6/81

operand. In this case, the pos may be computed as

entry-number * bits-per-entry _

and the extract done directly.

For this reason, it may be to the JOVIAL programmer's advantage

to define tight tables so that an integral number of entries fill

a word exactly.

4.16 Star tables

Formal parameter tables with variable bounds (star tables) are

not often well-supported by hardware. These tables pose problems

for several reasons. First, address computation is more

difficult because the lower bounds must be subtracted from the

subscripts at execution time. Also, star tables which are passed

BYVAL or BYRES require the allocation of an object whose size is

not known until execution time.

4.17 Fixed Point Arithnetic

Fixed point arithmetic often presents problems due to inadequate

hardware support. Difficulties arise both because there is no

"F direct support for fixed point and because the primitives

11-5.42

* -'" *.

- . ' .



Jovial/Nebula Suitability Report 10/6/81 V.

provided do not match language requirements. Two of the most

common problems are loss of precision and scaling. Precision may

be lost if ordinary integer arithmetic is used for fixed point

operations. This is particularly true for division, because

integer divide instructions often produce just a single precision

quotient. Scaling is often inefficient because "arithmetic"

shifts often do not produce arithmetic results. On two's

complement machines right shift is not equivalent to division by

a power of two for negative numbers, and on one's complement

machines left Marithmetic" shift is not equivalent to

multiplication by a power of two.

The definition of MULFIX and DIVFIX are somewhat imprecise in

that no indication is given as to whether bits may be lost in the

shifting process. If it is possible for bits of the product or

dividend to be lost due to shifting and before the final result

is stored, these instructions may not be usable in all cases. If

the instructions are equivalent to infinite precision operations

with truncation at the storing of the final result, Nebula

provides good support for fixed point arithmetic operations. We

assume that this is the intention of Nebula, since Ada has

essentially the same requirements. Integer addition and

subtraction and fixed point multiplication and division can be

used for the four basic operations.

The one area in which Nebula is weak is in regard to truncation

and rounding. Since integer and floating point operands are also

11-5.43
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affected, truncation and rounding are discussed in a separate

* section.

4.18 Data Allocation

JOVIAL is very much a word-oriented language. Tables may be

* defined in terms of words per entry, items in specified tables

start at a given bit within a w9rd, and tight tables are

allocated with an integral number of entries per word.

Because JOVIAL is word-oriented, there are sometimes problems

mapping language constructs onto a machine architecture. One

common problem arises when machines start the low order byte of

integers in the byte with the lowest address. In such cases,

characters run from the most significant character to the least

significant, in order of increasing address, but integers go from

least significance to greatest. This is contrary to the

assumptions which JOVIAL makes about the ordering of bits and

characters within a word. This can affect the efficiency of

accessing bit strings; for character strings it may be necessary

to represent values in machine dependent format, which may cause

transported programs to fail.

One machine for which this is the case is the VAX. It provides

instructions for handling integers, characters and bits, but in
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order for an implementation to correspond to the rules of JOVIAL,

it cannot take advantage of the hardware to its fullest extent.

One would like to be able to use the character move instructions

for character strings; that implies using the hardware character

allocation scheme. One would also like to be able to use the

hardware to perform arithmetic operations; that determines the

allocation for integers. Using the hardwaic alncation for bits,

though, causes problems because bit 0 of an integer is the least

significant in the machine but JOVIAL defines it to be the most

significant bit. This problem could be remedied if an actual

conversion was done for converting integers to bits and vice

versa. (Normally no code is generated for such a conversion.)

Another alternative is to allocate data as specified by JOVIAL,

and not make good use of the hardware.

Fortunately, although Nebula resembles VAX in a number of

respects, bits, characters and numbers are all allocated so that I
the most significant byte is the first byte (i.e., the byte with

the lowest address). Thus, this is not a problem, given the

current definition of Nebula. We mention it here to caution

against any changes in the definition which would introduce this

4 problem .
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4.19 Abort statement

-.6.

The ABORT statement is unsupported by current architectures. 2

When an ABORT statement is executed, control is transferred to .1
the label specified in the ABORT clause of the innermost call.

Normally this is handled by calling a library subroutine which

unwinds the call chain and pops the stack back to the appropriate

levels. If a display is used for outer scope references, this

routine restores it to its condition when the abort clause was

encountered.

Since the context stack is not directly accessible to user

programs, this app oach cannot be used if the CALL instruction is

used for subroutine calls. Fortunately, there is a better

correspondence between the ABORT statement and Nebula exception

handling than there is between gotos and the exception handling.

When an ABORT statement is executed, the abort "handler" is the

label which was specified in the most recently executed call

which contained an ABORT clause. This corresponds rather well to

the method for handling exceptions; the most recent handler is

invoked. The only differences is that exceptions are associated

with procedures and ABORTs with calls, but since there can be

only one active call from a procedure at a given time, this 'is

not a problem. The sequence:

EXCEPT abort-label ; specify label

CALL proc

11-5.46
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EXCEPT #0 ; disarm abort

can be used satisfactorily. Although it would be possible to

define an ABORT label operation which would eliminate the need to

turn off the exception handler after the return from the call,

this would be a gimmick. The savings in terms of space would be

relatively small - only two bytes per clause. We do recommend,

however, that an ABORT exception code be reserved, to avoid a -

conflict in the event that JOVIAL and Ada programs are linked

together.

1 t
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5. Other Issues

There are certain other issues which do not cause problems in

implementing the MIL-STD-1589B version of JOVIAL, but which do

present difficulties in implementing other languages or other

versions of JOVIAL. They are discussed here to allay any fears

that the reader may have with regard to these particular topics.

5.1 Parallel Tables

One area of JOVIAL J73/I which caused a number of implementation

problems on a variety of machines was parallel tables. It was

then possible to have multiple-word items in parallel tables.

This meant that the words of such an item were allocated to . ..

discontiguous storage locations, requiring extra code to be

generated whenever such an item was referenced.

The current definition of JOVIAL (MIL-STD-1589B) has eliminated

these problems, because it restricts items in parallel tables to

being word-size or smaller. Thus, parallel tables cause no

particular problems.

11-5..
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5.2 Checking

One of the concerns about the Nebula architecture is whether it

provides sufficient support for checking, or whether the three

operand operators are rendered useless by range checking

requirements. JOVIAL, unlike Ada, has virtually no formal

requirements for checking the legality of subscripts or for

performing range checking for assignments. In fact, there are no I

explicit requirements for checking.

Some checking is traditionally done, however. Reasonable

implementations check whether the stack will overflow when space

is allocated. Exponentiation library subroutines normally check

for errors such as raising a negative number to a non-integer

power, or raising zero to a negative power.

*It should be kept in mind that some features of Nebula are more

useful in JOVIAL, where checking may be ignored than in Ada which

required checking. (For a discussion of the problems presented

by Ada in this regard see [Davis8l].) Three operand operators,

the general indexed modes, and the parameter passing mechanism

are all more usable in the absence of checking, than in its

presence. They are quite useful for JOVIAL, although parameter

passing could be made more so.
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5.3 Tasking, Input/Output

There are a number of issues such as input/output and tasking

which are important to the implementation of embedded systems,

but which are outside the scope of the JOVIAL language

definition. In actual JOVIAL programs, input/output and tasking

are done through procedure calls to assembly language routines.

There is no standard in the language as to what routines exist,

and we know of no de facto standards. The only formal

requirement in these areas is that it be posqible to support

reentrant procedures. This is discussed under "Procedures".
SI

Because JOVIAL has no explicit requirements for tasking or

input/output, we did not investigate these areas in detail. An

architecture which can support Ada should provide sufficient

support in this regard.

5.4 Registers

Nebula's register handling is unusual, but not unique (the T1990

also gives each procedure its own set of registers). The fact

that each procedure "owns" its registers has advantages and

disadvantages with respect to efficiency, but we feel that it is

primarily an advantage. The disadvantages are that it is

impossible to pass parameters or to maintain global information
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(such as a display) in the registers and that for certain

implementations there may be a speed penalty. The advantage is L

that it is not necessary to save the registers at procedure

* calls.

4
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6. Effect of Nebula's Shortcomings on JOVIAL Programmers

Most of the problems which JOVIAL presents to JOVIAL

implementations should have little effect on the JOVIAL

programmer. The only JOVIAL feature which would have an

unreasonable implementation on the 1862A version of Nebula is

parameter labels. These are likely to be used infrequently,

anyway, and are likely to be used only when there is no

reasonable alternative. For that reason we do not expect that

Nebula will have much impact on their use.

The fact that parameters are passed by reference in Nebula will

have the effect of discouraging the use of small procedures, due

to the fact that prologues and epilogues will be a significant

fraction of the total size of those procedures. However, this is

no more true on Nebula than on ordinary register-oriented

architectures.

Inefficiencies in handling long bit strings and mixed rounding

and truncation may discourage some efficiency-minded programmers

from using these language features. Explicit truncation and
rounding are likely to be used where they are necessary and

cannot be avoided, so the actual effect should be small.

11-5.52
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7. Additional Recommendations

This section contains recommendations for modifications to Nebula

which are related to several of the problem areas discussed

above, as well as suggestions for improvements which do not

really address problems, but which could contribute to the

efficiency of Nebula for JOVIAL programs.

7.1 Procedure Calls and Space Management
I|

We feel that the hardware could be of greater assistance in

implementing procedure calls efficiently, particularly with

regard to the bookkeeping which must be done at proc entry and

exit. This could be done with generated code, but providing help

using hardware would guarantee a uniform convention across

compilers for different languages, would enable more efficient

references to local data, since assumption could then be made

about the location of the local frame pointer, and could provide

an additional degree of protection by preventing a reference to

one stack frame from accessing data from another.

Our proposal involves a modification of two instructions, CALL

and RET, and addition of another, SPACE. In addition, the

procedure description should be modified to contain an indication

of how much local storage to reserve. CALL should be altered to
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set up the local frame pointer (possibly register 2) based on the

stack pointer, and to bump the stack pointer by the amount of

storage specified in the procedure description. Before the stack

pointer is modified, a check should be made to insure that the

stack limit is not exceeded. The value for the limit could be

kept in a register in I/O space.

A RET would undo the allocation performed by the call. If the

stack pointer and local frame pointer were both kept in

registers, this would be automatic, since the old values of those

registers would be restored from the context stack.

It would also be useful to allow space to be obtained without

executing a CALL. This is necessary in JOVIAL for obtaining

space for star tables which are passed by value, and in other

languages, such as Ada, for arrays with dynamic bounds. The

SPACE instruction would have a single explicit argument, the

amount of space to be obtained. The stack pointer, the frame

pointer, and the stack limit would all be implicit.

One aspect of the hardware design which must be addressed by the

hardware designers, but which does not necessarily have to be

part of the standard, is the mechanism for up-level references.

Either a display-oriented or static-link-oriented scheme could be ..-.
used. Provided that facilities are provided in the hardware for

up-level references, the compiler need not know which method was
chosen. It is necessary, however, to be able to handle both

1 5
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parameter labels and parameter procedures if JOVIAL is to be

implemented on such an architecture. Our recommendations for

parameter labels were mentioned above. For parameter procedures

a "call and set context3 instruction would be necessary. This

instruction would either set up the appropriate static links or

alter the display, depending on the method of implementation

which was chosen.

7.2 Operand Addressing

The most important factor in achieving code compactness is

conciseness in referencing operands. This is particularly true

in an ISA like Nebula which provides such a large virtual address U

space. As mentioned above, those architectures which implement

JOVIAL most efficiently are the ones which handle operand

addressing in the most efficient manner. Operand addressing in

JOVIAL is more general than even Nebula, which provides more

addressing modes than do most machines. Examples of addressing 71
types which are not handled directly in Nebula are subscripted

i ii
subscripts and pointers to pointers to pointers. Ideally, the

compound addressing modes in Nebula would allow compound modes to

be their operands, but this would prevent the address calculation ..-. -,

mechanism from being a finite state machine. For this reason we

are not suggesting that this generalization actually be added to

Nebula.
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There are, however, several opportunities to make operand

addressing more efficient: local data, part-word items and items _I

in tables.

7.2.1 Local Data

It is already possible to address those local data items which

are allocated to registers with single-byte operands. It would

be advantageous to be able to address memory operands with a

single byte also in those procedures whose local data did not fit

in the registers. A possible approach here is to introduce an

operand specifier which assumes that the data is based on the

local frame pointer; this would require a convention for the

location of the local frame pointer.

7.2.2 Up-Level (Dynamic) Data

If the architecture provides support for allocating data on the

runtime stack, it should also provide an operand specifier type

which allows up-level references. This could be a compound mode

which would take a (static) nesting level number and an operand

specifier. Ideally, the present compound modes (scaled index,

unscaled index and extended parameter) should be allowed as

11-5.56
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operands of this new mode. The data accessed would be that which

was at the offset specified by the operand from the local frame

pointer for the procedure whose nesting level was specified.

7.2.3 Up-Level Parameters

If the Nebula parameter passing mechanism is to be used

efficiently, there should be a means by which up-level parameters

can be referenced. This can be accomplished in several ways.

One is to add a mode which would allow references to parameters

at the nth static level. Another is to move the parameters'

* values or addresses into the local stack frame when the call is

executed. It would then be possible to access the parameters

through the same mechanism which would be used to reference

up-level data. (This mechanism needs to be added also. See

"Up-Level (Dynamic) Data" above.)

7.2.4 Part-Word Operands .

Because part-word operands are common in JOVIAL, and can be used

in a number of different contexts, we feel that it would be 6

advantageous to have an accessing mode which defined a part-word

field. There are two possible approaches. One is to let the
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first bit and number of bits be separate operands in a super

" operand mode. This mode would have a total of three operand -

specifiers: the first bit, the number of bits and the address.

The field defined by the part-word operand mode would be the same

as the field specified by the corresponding three operand

descriptions in the bit field intructions (LBF, LBFS, and STF).

* ". The correspondences between the JOVIAL and Nebula nomenclatures

are as follows: first bit = pos, number of bits - size, address -

base. Ideally, there would also be an indication as to whether

the operand was signed. This could be done by introducing signed

and unsigned part-word operand specifiers. The operand would

then be extended to the appropriate size by sign-filling or

zero-filling, depending on the operand specifier. - .

An alternative which is less general, but more space efficient,

would be to use an operand descriptor which would contain the

first bit, number of bits, an indication of signedness and a base

address or offset. This is reminiscent of the scheme used on the

DEC-10 but with several important differences. The most

important is that the index or base registers, if any, are

specified in the operand, rather than in the descriptor. The

compound addressing mode in this case would contain two operand

*-" specifiers, one for the descriptor, and one for the base. The

address obtained from the base would be added to the offset in

the descriptor to form the actual base address, which would then

be used with the first bit and number of bits to determine the

location of the field.

11-5.58
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7.2.5 Table Data

Nebula provides a special addressing mode (scaled index) for

accessing data which is allocated in 1, 2, 4 and 8 byte units.

Many programming languages, including JOVIAL allow arrays of

records (in JOVIAL they are called tables). First, table entries

are often not 1, 2, 4 or 8 bytes long. Second, if there are

multiple items in an entry, the entry size is not equal to the

item size. In either of these cases, scaled index mode is not

applicable. It would be very useful to have an operand specifier

which allowed an arbitrary multiplier. For the common cases it

would be sufficient to permit a constant multiplier, but for

consistency with the rest of Nebula it is probably a good idea to

allow the multiplier to be a regular operand. This compound

addressing mode would take three simple operands as arguments:

the multiplier, the index and the base. The index and the base

would satisfy the same requirements as the same operands in

scaled and unscaled index modes. The multiplier would be a value 1

operand. Addresses would be calculated as:

multiplier*index-value + base-address.

7.3 Miscellaneous Operations
*O S

There are several operations in JOVIAL which are not supported

directly. These include ** (exponentiation), the EQV (bit-by-bit .
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equivalence) operator and SGN. Implementing exponentiation in

the hardware would provide a significant saving (hundreds of --

bytes) over a software implementation, and, although

exponentiation is not as common as addition or multiplication,

almost all embedded applications make some use of it. The latter

two are not commonly used operators, but they are easier to -

implement in microcode than they are to generate code for.

In the absence of an EQV instruction, the code generated is

usually:

XOR a, b, temp

NOT temp.

SGN is more difficult to generate code for since it involves

branching as in:

MOV #lt

TEST a

BGTR 1

MOV #0,t

PlOV #-lt

We recommend that these operations be added to Nebula. EQV

should be defined in the same manner as XOR. There should be
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SIGN instructions which take a fixed- (including integer) and

floating-point operand and return an integer result: -1 if the

operand is negative, 0 if it is zero, and +1 if it is positive.

Other instructions worthy of consideration are MIN and MAX,

although there are no such operators in the language.

7.4 Debugging ]
Debugging is actually an issue which concerns not just JOVIAL,

but programming in general. Nebula provides some debugging

features; we feel that there are some others which would be

relatively easy to implement in hardware, but could be quite

difficult to implement in software.

One of the more useful facilities which could be added is a

"break on reference" capability. This would generate a break

whenever a given location was referenced. This would facilitate

tracing as well as the detection of wild stores. In addition, it

would make it possible to set breakpoints even for programs in "

ROM without having to break at every instruction or call. A

refinement to this facility would allow the breaks to be

generated for all references or only for those which cause the i

location to be modified.
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8. Summary

The Nebula ISA, as described in MIL-STD-1862A, provides better

support for JOVIAL programs than do virtually all other current

architectures. Some architectures, such as the CAPS, provide a

more compact means of expressing those programs.

Although the architecture is basically friendly with respect to

JOVIAL, there remain some areas in which it would be possible to

make improvements to achieve greater efficiency. We have made a

number of suggestions for modifications to the architecture. In

relative order of importance they are:

o Additional support for parameter labels.

o Modifications to operand specifiers to more easily

accomodate:

Local data references

Up-level data references

Up-level parameter references

Table data

Part-word data

o Additional support for parameter passing

0

o Additional support for storage allocation. (May also

require support for parameter procedures)

11-5.62
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o Support for truncation,filling and overlapped operands •

in character moves.

o Support for truncation and rounding of arithmetic

operands on a local basis.

0 Addition of miscellaneous JOVIAL operations:

exponentiation (**), equivalence (EQV), and sign (SGN).

o Addition of two operand forms for operators XOR, MOD

and REM.

o Definition of loop operators to conform to JOVIAL

semantics (so loop counter value exceeds limit upon

exit from the loop)

o Additional debugging support

o Addition of miscellaneous operations: MAX, MIN.

. ,j
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We also wish to call attention to problems which could arise if

Nebula is changed without regard to JOVIAL.

o Bits, characters and numbers should all be allocated in

the same direction (from the most- to least-significant 1 _A

bit). Otherwise, it will be difficult to implement one

or more of these types efficiently and still conform to 71
the rules of JOVIAL.

o A mechanism for allocating local data must take into

account the fact that JOVIAL permits parameter labels

4 and procedures. In particular, there must be a way to

save environments.

4

4
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1. Introduction

A fault-tolerant system is one that can continue to execute despite malfunc-

tions by one or more components. In this note, I comment on the suitability of

using the proposed Nebula Instruction Set Architecture [1] as a processor in a

fault-tolerant computing system. This note does not address software reliability

issues; i.e., the ease with which correct (consistent with a formal specification)

programs can be developed for a Nebula. Instead, we attempt to determine:

Given a program that will run correctly on a fault-free Nebula, how should
one construct a system using Nebula processors on which that program will
run correctly despite hardware failures.

The Nebula Instruction Set Architecture does not allow for the possibility of

processor failures. Although facilities are described for coping with power

failures (Ell sec. 11.4) and memory system failures ([1] sec. 11.6) -- both impor-

tant aspects of the support environment for a processor -- no facilities to deal

with Nebula malfunctions are mentioned. This has several consequences. First, it

makes it difficult, although not impossible, to construct a fault-tolerant computing
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* system with Nebula processors. This is detailed below. Secondly, it provides lit-

tie incentive for contractors to construct Nebula processors with fault-detection
capabilities. For example, if an unrecoverable hardware failure is detected, there
is no well-defined action for the hardware to take. And, not all hardware failures

* are recoverable; some failures can be easily detected but not easily recovered from.

* 2. Paradigms for Building Fault-Tolerant Systems *

Given almost any processor instruction set architecture, it is possible to

build a fault-tolerant system by using replication and voting [2]. Suppose we

desire a system that reads from an input device, writes to an output device, and can

continue to function correctly despite up to k failures. Such a system can be con-

structed as follows. The input device is replicated 3k-fold, as is the processor

and output device. Then, each processor reads a value from every input device

instance as well as: the values read by every processor from each input device

instance, the values every processor read from every processor as having been read

from every input device instance, and so on. A processor then performs its computa-

* tion based on this vector of values. Usually, the computation will be based on the

median value read -- in effect, a majority consensus. Then, the results of the

computation are written to each instance of the replicated output device. The

action of each of the output devices is a function of all of the values written to

it.

- While this approach allows construction of fault tolerant systems with any

* specified degree of reliability, it does so at a rather substantial cost. Hardware

is replicated and an extensive interconnection facility is required. Also, a good

deal of actual commtunication is required for each computational step.

*A second approach to constructing fault tolerant systems can be exploited if

processors are:
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(i) capable of detecting failures and

(i) facilities exist for a processor to be stopped by program
control, either locally or remotely.

Then, a system can be structured as follows. If ever a processor detects that it is

not functioning properly, or that some other processor is not functioning properly, _A 1

a fat lure interrupt is signalled on the m alfunctioning processor. The effect of a

failure interrupt is to invoke an interrupt handler that saves state information.

Moreover, once a failure has been signalled, we assume that the processor automati-

cally halts after some tshort) length of time. This time Interval should be long

enough for system storage to be made consistent with the processor caches and for a

reasonable amount of state information to be saved on some involatile storage

medium. This ensures that a failed processor does not continue to operate in its

failed mode for too long, but has an opportunity to store its state information i

before being halted. Whenever a processor is halted due to a failure, a reconfi-

guration rule is invoked to redistribute tasks over the running processors.

This approach presupposes (1) the availability of the state information neces-

sary to resume processes that were running on a malfunctioning processor and (2)

that all failures can be detected. The failure-interrupt handler provides an oppor-

tunity to store relevant state information. However, it might not always be

successful, due to the nature of the hardware failure. Nevertheless, there do exist

techniques for structuring programs so that state information is periodically

"checkpointed" to some stable storage medium; a formal basis for this approach to

program design is described in [3).

Secondly, while it is not possible to detect all failures using a finite amount

of hardware, failure detection can be implemented to any desired degree by replicat-

ing hardware. For example, the Intel IAPX 432 [4) has provisions for a processor to

function in "slave" mode. When operating in this mode, it monitors the input/output

11-6.3
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bus of another processor and raises-a signal level if it detects an inconsistency

between its computations and the behavior of the processor it is monitoring.

Raising this signal level causes a failure interrupt.

Although the Nebula specification does not presently include a failure inter-

rupt, or a processor halt facility (remotely signalled), these features could be

added with minor, if any, changes to the rest of the architecture. Then, a fault-

tolerant system could be constructed, using the second approach described above with

a collection of Nebula processors that can communicate by using some stable (i.e.,

crash resistant) storage medium. Constructing an approximation of such a stable

storage system by using existing storage devices -- disks in particular -- is well

within the state of the art E5] £6]. Running on top of each Nebula processor is a

kernel that implements a "highly reliable" Nebula. It does this by implementing the

interface as described in the present Nebula Instruction Set Architecture1, and in

conjunction with the kernels on the other processors in the system, ensuring that

for suitably structured applications:

i. tasks are run (only) on correctly functioning processors, and

ii. when a task is run on a malfunctioning processor and then
moved to a functioning processor, it is as if the task
was never run on the malfunctioning processor.

By "suitably structured applications" we mean those that perform checkpoints of the

necessary state information with sufficient frequency. (See [33.) And, while it

is inappropriate to include specifications for facilities like the slave mode on the

IAPX 432 in an Instruction Set Architecture, such a feature might well be provided

on some Nebula implementations -- those intended for use in fault-tolerant systems.

It is useful to point out the implications of such an approach with respect

to the software portability. It seems reasonable for a failure interrupt to return

1It is not clear whether this should include the proposed failure interrupt.
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a code indicating that nature of the hardware failure detected 2. Such a code would
. provide information to the fault interrupt handler about what data might be damaged

and what features of the hardware should be suspect, hence not used in performing

recovery. Moreover, it seems likely that these codes will be implementation

dependent -- hardware error detection capabilities will vary from Implementation

to Implementation -- and that by making use of implementation-dependent data

structures, such as the exact format of a context stack, the programmer of a

fault-handler will have a better opportunity to save a meaningful state. Thus, it

seems reasonable to view the fault-handler as not portable; it would be dependent on

the Nebula Implementation and perhaps even the exact configuration of Nebulas of

which it is part (to implement a reconfiguration rule). Other programs would be
* I-

portable to the extent they presently are.

3. Conclusions

There is no indication that Nebula is well-suited for the construction of

fault-tolerant systems. However, with only slight modification -- the introduction

of a new interrupt class, called failure interrupt -- this can be changed. Lastly,

the fact that many aspects of the instruction set architecture are implementation-

dependent precludes construction of portable fault-tolerant software.
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INTRODUCTI ON

Successful virtual machine implementations have existed almost since the

intr (uction of the third generation computer. Early work at the IBM

Cambridge Scientific Center indicated the virtual machine approach was

feasiblerli even before virtual memory hardware was generally available.

k subsequent implementation of a virtual machine based general purpose

timesharing systemr21 has proven to be quite popular and has become the

-mjor interactiv.'e operating system available across the full range of
IBM 370-comoatible processors.A31 dvantages of using a virtual machine

envirrnment have been known for some and include:

* measuring and testing operating system software

• running different operating supervisors or versions r.f the same oper-

ating supervisor at the same time

*insuring reliability and security

11-7.1 "

. . . . . .. . . . . . . .-- .-



Nebula Architectural Support for Virtual Machines

* making hardware changes or enhancements without requiring the recoding

of existing operating systems

* running with a virtual configuration that is different from the real

system (memory, different I/O devices, etc.).

In the initial efforts to select a standard military computer architec-

ture, the selected architecture would have been required to be virtuali-

zable if all architectures other than the IBM 370 were not excluded.41

This paper attempts to analyze the weaknesses of the Nebula architecture

with respect to its ability to support a virtual machine environment.

REQUIREMENTS FOR VIRTUALIZABILITY

For a rnore complete discussion of the requirements for virtualizability,

the reader is referred to a well known paper by Popek and Goldberg.[51

The paper outlines several characteristics of a virtual machine environ-

1. except for timing considerations, the provided environment is

essentially identical to the real machine

2. programs running in a virtual machine environment show only a minor

decrease in speed

3. and the real operating supervisor has complete control of the sys-

tem resources.

The m:jor concept presented in the paper is one of sensitive instruc-

tions. An instruction is control sensitive if execution of the instruc-

tion changes the privilege mode or if it changes the memory map. An

instruction is behavior sensitive if the results of its execution are

dependent on the memory map or on the privilege mode of the processor.

L
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The important result of the paper is that an architecture can be virtu-

alized if the sensitive instructions are a subset of the privileged

instructions.

PROBLEM AREAS IN NEBULA

Memory Management

The User/Supervisor map structure of Nebula presents some difficulties

in simulating a Nebula machine. Certain fixed locations contain virtual

addresses of procedures to be called under asynchronous conditions - -

(timer interval expiration, I/O interruption, etc.). Since these proce-

dures may be privileged (depending on bit 31 of the interrupt vector)

and since the interrupt may not be related to the currently executing

virtual machine, some intervention by the real operating supervisor is

required. If the virtual machine is not allcwed to enter real supervi- I S
sor mcnde, all references to the virtual supervisor map will cause traps

generating prohibitive overhead. The solution which decreases the over-

head to a reasonable level is to allow the virtual machine to use real -'

supervisor mode but make access to certain segments in the supervisor ,

map a privileged operation. The privileged segments would contain

procedures and control blocks used by the real operating supervisor to jl
process interrupts and perform other housekeeping chores.

The use of privileged segments to contain the code and control blocks

, of the real. operating supervisor gives rise to Additional problems. The

first problem is the loss of segments available to the virtual machine; j
if the Nebula implementation allows M segments and the real supervisor

uses R segments, then only M - R segments are available to the virtual

11-7.3
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- - - - - - - - - - - - - - - - -

machine. Operating supervisors that assume Q segments are available in

the implementation may not be able to execute in the virtual machine

provided by the real operating supervisor if Q > M - R.

Another problem with this approach arises when one attempts to choose

* a virtual address for the privileged segment(s). Although there is

likely to be plenty of room in the supervisor virtual address space for

the privileged segments, they must not overlap any segments in the

supervisor map of the currently executing virtual machine. The only

solution within the current Nebula architecture appears to be to relo-

cate the priv.ileged segments (along with any pointers to the privileged

segments) to an unused portion of the virtual machine's supervisor map

whenever there is a collision. The relocation can be performed fairly

efficiently for code segments containing no address constants, but

places severe constraints on the use of pointers between control blocks

requiring 'that they be independent of their location in the address

space.

Additionally, a virtual machine may have privileged segments which

should only be accessible running in virtual privileged mode. A solu-

tion to this problem is to flip-flop the real protection status of the *' '.

virtual privileged segments; i. e. make the segments privileged when the

virtual machine is executing in non-privileged mode (to prevent the vir-

tual machine from accessing them without causing a trap), and making

them non-privileged when the virtual machine is executing in virtual

privileged mode (to allow the virtual machine to access the segments

without causing a trap).

11-7.4
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A further problem with the User/Supervisor map structure is that the

task switching instructions do not alter the cached version of the

- supervisor map. In the general case, to dispatch a new virtual machine

(task) with the current Nebula architecture, it is necessary to perform

REPENT instructions to synchronize the new supervisor map in memory with

- the one in cache.

Privileged Instruction Simulation

When a virtual machine attempts to execute a privileged instruction, a

trap to the real supervisor should occur. If the virtual machine is

executing in virtual privileged mode, the real supervisor must simulate

the operation of the instruction on a real machine; otherwise the real

supervisor must simulate a privileged operation trap to the virtual

" machine. Simulation of privileged instructions is difficult in the

Nebula architecture for the following reasons:

" 1. Software simulation of the full set of addressing modes is quite

complex and likely to entail significant overhead.

a. The contents of registers and the values of procedure parame-

ters are sometimes required but are not available without

access to the context stack.

b. The instruction causing the trap is possibly located in an

instruction segment. The real operating supervisor may only

access the operation code and operands of the instruction

causing the trap by: aliasing the segment containing the

* instruction with a segment allowing data access; or changing

the protection status of the segment using the REPENT instruc-

tion.

11-7.5
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2. After simulation of the privileged instruction, the interrupted

task must be resumed at the instruction following the one causing

the interrupt. Nebula provides no convenient mechanism to resume a

task other than at the point of interruption.

3. Certain instructions manipulate or create implementation dependent

data and are impossible to simulate without more detailed specifi-

cation than is provided by MIL-STD-1862h. In particular, the '

PTASK, PRAISE, and PINIT instructions manipulate the context stack

pointer; and the SETSEG instruction generates implementation depen-

dent information in the segment associators of the IOC register

blocks.

- 4 Since all instructions have the potential of accessing a privileged

segment, simulation for the complete Nebula instruction set must be

handled in some fashion.
Tf the instruction simulation requires that a privileged instruction

A- . -. 6.

trap be reflected to the virtual machine, the Nebula architecture again

makes this difficult. The natural operation would be to initiate a task

on the virtual machine's (virtual) kernel context stack using the privi-

leged instruction trap handler vector in the virtual machine's map. The

difficulty in performing this operation centers around the inability of

the TINIT or PINIT instructions to pass a parameter list. The trap

procedure expects a single parameter which is a byte size reference to

the opcode of the instruction causing the trap. There appears to be no

implementation independent way to both create the execution context on

the virtual machine's kernel context stack and pass parameters to the--

trap procedure.

11-7.6
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Sensitive Instructions

Since the real operating supervisor must take quite different actions

when a privilege violation is encountered depending on whether or not a

virtual machine is in virtual privileged mode, the real supervisor must

be able to know thevirtual privilege status of virtual machine at all

times. A sufficient condition for satisfying this requirement is that

every instruction which can cause a change in the privilege status is

itself a privileged instruction. However, in the current Nebula archi-

tecture certain instructions allow a privilege mode change without caus-

ing a privilege instruction trap. In particular, CALLU and RET (and

some other RET-type instructions) can change a task between privileged

and non-privileged mode. There appears to be no bypass for this problem

and it is of such magnitude that if a change in the Nebula architecture

is not made, execution of virtual Nebula machines on a Nebula architec-
I 6

ture is not feasible.

Another type of sensitive instruction is one that alters location

dependent control information (timer intervals, etc.). The real operat-

ing supervisor cannot allow direct access by the virtual machine to the

hardware assigned physical locations, but it must be aware of any

changes the virtual operating supervisor thinks it is making to those

locations. (These locations are often used in vectored calls which may -

cause a change in privilege status, depending on the setting of bit 31

of the vector entry.) Most cases of sensitive instructions of this type

can be handled by (1) making access to the first megabyte of a virtualcan

machine's memory (I/O space) a privileged operation; and (2) intercept-

ing all vectored calls (SVC, OPEX, etc.) to insure that the virtual

machine's procedures are called in a nonprivileged mode.
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The difficulty with the above technique lies in passing the proper

number of parameters to the routine to be invoked within the virtual

machine. It is likely to be the case that OPEX and SVC routines have

the number of parameters to be passed coded at the entry address of the

procedure. If the real operating supervisor gets entered for an OPEX or

SVC, the virtual operating supervisor's corresponding procedure must be

called (after some housekeeping functions are performed) with the origi-

nal parameters. However, the original parameters may not be available

unless the SVC or OPEX procedure invoked in the real operating supervi-

sor has at least as many parameters as its counterpart procedure in the

virtual operating supervisor. The real operating supervisor routines

cannot really just allow for the maximum parameters since the operand

pre-evaluation of arbitrary memory is likely to cause an exception.

Another alternative is to change the parameter number at the entry

address of the real operating supervisor's OPEX and SVC handler proce-

dures to correspond with the parameter numbers specified in the virtual

machine about to be executed -- this technique has the drawback of

requiring the modification of memory locations in a procedure segment

with the risk of mismatches between the instruction pipeline and memory.

. Input/Output

Access to I/O Space: Access to real I/O Space cannot be allowed except

pcssibly for devices dedicated to virtual machines (TTY's, tape drives,

etc.). Accesses that a virtual machine makes to its I/O Space must be

mapped into to appropriate actions to be performed in the real I/O 

Space.

11-7.8
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Memory Map Restrictions: The segment restrictions affect how real

memory can be allocated to each virtual machine. To satisfy the

requirements for I/O segment protection, the real segments must be at

least as large as the segments of the task executing in the virtual

machine for which a SETSEG instruction has been issued. Of course, the

real segments must have the same protection bits (instruction, data

read, context, etc.) as the virtual segments. If the virtual operating

supervisor runs without using the segmentation hardware, and during the

initialization process immediately following an IPL or Reset, the real

operating supervisor may have to provide a piece of contiguous real

memory that is the same size as the memory of the virtual machine.

PROPOSED ADDITIONS TO NEBULA

Memory Management

The most painful problems in the memory management area are the problem

of locating/relocating the segment containing the real operating super-

visor, and the restrictions on the number of segments that a process can

have.

Memory Segment for Real Operating Supervisor: This problem could be

eliminated with the addition of a privileged instruction which returned

information about the number of segments available on the machine, the

amount of memory on the machine, and the highest unique virtual address

(the implementation virtual address space). Assuming that virtual oper-

ating supervisors would issue such an instruction and/or be prepared to

use no more resources (memory, segment descriptors, etc.) than was avai-

lable, the real operating supervisor could reserve some of the machine

11-7.9
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resources for itself (a few segments that only it could access for cont---

, rolling resource allocation between virtual machines). The ability for

an operating supervisor to issue an instruction and then configure

itself based on the machine or implementation resources it is told are

available greatly increases the portability of operating system code

between machines.

Restrictions on the Number of Segments: Restrictions on the number of

segments should be removed. Although it should be possible for the

operating supervisor to find out in an implementation independent manner

how many segments are .implemented in the cache, the address mapping

hardware should be responsible for keeping actively referenced segment

table entries quickly accessible. The only penalty for executing a task

with more segments than fit in the cache would be one of performance;

and even that penalty would likely be removed by technology insertion if

at a later date the impact appeared significant.

Synchronization of Supervisor Map: The necessity of performing multiple

REPENT instructions to synchronize the cached and memory versions of the

supervisor map causes unnecessary overhead. Either the task instruc-

tions should have an option which causes synchronization of the superv-

sor mip as well as the user map; or, as recommended below, there should

be new instructions for dispatching a virtual machine that include syn-

chronization of both maps as part of their operation.

Privileged and Sensitive Instructions

* Many privileged operations require little or no intervention on the part

of the real operating supervisor other than simulating the instruction

I
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by placing the appropriate results within the virtual machine's memory.

Similarly, OPEX and SVC handling consists of a few housekeeping func-

tions and then calling the appropriate procedure within the virtual

machine. Given certain control blocks that the real operating supervi-

* sor maintains, it is certainly possible for much of the simulation to be

performed by microcode, thereby eliminating problems with operand access

and context stack manipulation which makes software simulation of these

instructions impossible. Special microcode to maintain virtual privi-

lege mode flags during the execution of CALLU and RET-type instructions

would remove the problems associated with these instructions. These

changes would not only greatly increase the virtualizability of the

Nebula architecture, they would result in a substantial performance

improvement for programs running in a virtual machine environment.

The action of the special microcode would be disabled when the

machine entered real privileged state and would be enabled by when a new

instruction is executed. The functions performed by the new instruction

would be to. perform all the functions of LTASK but in addition would set

a flag indicating that a virtual machine is executing and make the

supervisor map in cache consistent with memory. One possible implemen-

tation would be to use bit 2 of the PSW to indicate whether the real

4 operating supervisor or a virtual machine is executing. If a virtual

machine is executing, bit 3 could indicate its virtual privilege mode.

Another approach would be to reserve an additional word in I/O space to

contain a pointer to the virtual machine control block of the currently

active virtual machine and use bit 31 of the quantity to indicate the

virtual privilege mode. In either case, the reserved protection keys
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and the reserved field in the relocation amount could also be used by

microcode to substantially reduce intervention by the real operating

supervisor when an instruction accesses a privileged segment.

An implemention which does not require extensive microcoding changes

would be the addition of a PRIVEX vector along the lines of the OPEX

vector. Any attempt to execute a privileged operation while in non-pri-

vileged mode and any other instruction which would cause a privileged

mode change (like CALLU and RET-type instructions) could be intercepted

and the instruction's arguments would be passed to the PRIVEX procedure

(note that the number of arguments passed is defined by the instruc-

* tion). Simulation of instructions accessing privileged segments would

still need to be performed as described above.

Input/Output

Since the channels use virtual addresses rather than real addresses and

since channel programs normally are executed from instruction segments,

it appears that many problems with virtualizing the I/O have been

bypassed. Privileged instructions to start and halt channel programs

would be likely to greatly decrease the number of accesses a virtual

machine would make to the IOC register block.

CONCLUSIONS

The Nebula architecture as it stands cannot be used to create a virtual

machine environment. As an absolute minimum, microcode changes are

required to the handling of the CALLU, RET-type, SVC and OPEX instruc-

tions or vectored calls. Simulation of certain instructions (e. g.

11-7.12
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PINIT, PRAISE, PTASK) requires more specification of the context stack

pointer and how it is manipulated. Additionally, microcode assist in

the handling of privileged instructions and and virtual privileged seg-

ments would greatly improve the performance of a virtual machine. A

special instruction (or set of instructions) to activate the virtual

machine microcode assist and make both the user and supervisor maps con-

sistent with memory when a task is dispatched would be extremely useful.

An instruction which returned certain characteristics of the processor

(memory size, etc.) would enhance portability of all operating supervi-

sors, and elimination of the restriction on the maximum number of seg-

ments would enhance the portability of all programs.
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Suitability of Nebula Architecture

for

Very High Level Language
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1. Introduction

This report is an evaluation of the suitability of the Nebula

" Instruction Set Architecture, as described in MIL-STD-1862A ESTQ], for

implementing very high level (VHL) languages. Such languages include

the many dialects of LISP, SAIL, PLANNER, SETL, etc. The basic archi-

tectural requirements of these languages are very similar. I shall

concentrate on LISP in the sequel but my comments will be sufficiently

general to apply to other VHL languages as well.

In the past, artificial intelligence research has been conducted S

using VHL languages almost exclusively, Thus, this report can also be

viewed as an evaluation of the Nebula ISA's suitability for artificial

intelligence research.

I assume Nebula is a general purpose architecture. Its suitability

for LISP should be compared to that of other general purpose architec-

tures, and not machines designed specifically for LISP, such as those

being marketed by LISP Machine Incorporated or Symbolics, which can be

expected to outperform it in that application.

Similarly, the Standard Nebula ISA has no provision for user micro-

* code; so its performance as a LISP machine should not be directly com- e

l 11-8.1 S
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pared to that of microprogrammable machines like the 3-Rivers PERQ or

the Xerox Dorado. It seems likely that many implementations of Nebula

". will be microprogrammable, perhaps in conjunction with the OPEX facil-

ity, but this facility can be expected to vary greatly between implemen- ,.

tations. For this report, I assume OPEX handlers should be written in

the standard Nebula instruction set; a need for special-purpose

microcoded OPEX handlers would indicate a weakness in the ISA.

This report is organized as follows. Section 2 presents some

important features that characterize very high level languages and

discusses the demands these features make on the underlying machine

architecture. Section 3 points out some features of the Nebula ISA that

make VHL language implementation more difficult and, in some cases,

suggests modifications to the architecture that would improve the

situation. Finally, Section 4 summarizes the report.

2. VHL Language Characteristics

Very high languages like LISP generally share two important

characteristics that facilitate rapid development and modification of

large systems.

2.1 The Treatment of Data

An essential feature of LISP is its "abstract" treatment of data.

The fundamental data type of pure LISP, the S-expression, is quite sim- -

ple: an S-expression is a list (technically, a binary tree) of values,

which may themselves be numbers, symbols or (recursively) S-expressions.

Production LISP systems also provide more conventional data structuring
44

mechanisms such as arrays and records. These are incorporated into the
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S-expression framework; so that, for example, a list element may be an

arbitrary array or record value. Thus, an S-expression value may be

arbitrarily large and, in general, no maximum size can be determined at 0

"compile-time". Large, complex structures can be created, discarded,

passed as arguments or returned as a function result, with no explicit

attention to storage management. Storage allocation and automatic deal-

location of unreferenced structures ("garbage collection") are built

into the run-time support system. Garbage collection, in particular,

takes place without program intervention.

LISP programmers argue that the convenience of not having to worry

about storage management far outweighs any inconvenience that results

from having to encode all data as lists. Common practice is to define a

set of constructor and accessing functions that hide representation

details from the programmer, thus creating a form of "abstract data

type".

List-structured data and automatic storage management as described I

above make some fundamental demands on the host machine ISA.

(1) The architecture should support an extremely large address space.

List-structured data is inefficient in its use of space - a large

fraction (up to half) of the space used is consumed by pointers.

There are special techniques for representing lists that alleviate

this difficulty somewhat, at the expense of added execution time.

Collectively these techniques have been called cdr-coding; see[Allen

78]. However, even with these techniques it is not uncommon for a

large LISP program to consume several million words of storage. As

program applications become more complex, storage 4
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demands will continue to grow. For example, the current implemen-

tation of the Berkeley VAX Unix operating system, currently under

consideration as a "standard" system for DARPA contractors, is con-

sidered somewhat deficient for Al research because it limits each -

process' virtual storage to about 6 million bytes [Joy 81].

To meet such storage requirements at the present level of technol-

ogy the architecture should support virtual memory, making it pos-

sible to run programs whose storage requirements exceed the avail-

able primary memory.

(2) The architecture should support processes with large working sets.

This is not immediately implied by the previous requirement, since

an architecture may support a large virtual address space (i.e.,

its addresses may be bits long) but perform badly unless processes

exhibit strong locality in their memory references (i.e., have

small working sets).

Building and manipulating linked lists tend to leave list elements

widely scattered in memory. Thus, LISP programs generally exhibit

less locality than conventional programs, and as a result make

heavier demands on a virtual memory system. Certain garbage

collection algorithms involve copying and "compacting" preserved

list structures to minimize working set size. An extensive

bibliography on this subject appears in [Cohen 81). Even with such

techniques, however, large working set size is a serious problem

with LISP programs.

(3) The architecture should support efficient garbage collection. A

particularly useful approach to garbage collection involves a
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concurrent process that reclaims storage continually, potentially

allowing LISP to be used in real-time applications. As discussed

below, the Nebula's context stack mechanism interferes with garbage

collection.

2.2 Programing Environments

A second feature of LISP that has contributed to its popularity

among AI researchers is the existence of usable program development

environments and the ease with which these environments can be

extended. LISP lends itself to the creation of such environments

because, at least during initial development, every LISP program is also

a LISP data object that can be examined, modified and interpreted by

other programs written in LISP. A LISP programming environment can be

developed and maintained entirely within LISP. A good introduction to

this "subculture" is tSandewall] 1976

A modern programming environment, whether for LISP, Ada or machine

language, should be highly interactive and interpretive. It should pro-

vide such features as execution tracing; reverse execution; breakpoints;

4 the ability to examine the state of a partially completed computation,

change the program and/or data and continue; and many others. Typically

such an environment is based on an interpreter that is prepared to

handle exceptions and can examine suspended activations of itself (e.g.,

to produce a "stack trace") after an exception. As I discuss below, the

Nebula's built-in procedure call mechanism is not suitable for this

application.

4S
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3. Suitability of the Nebula ISA

3.1. wMmry Management

As mentioned above, a sizeable LISP program is likely to require a

large virtual address space and to have a large, scattered working set

within that address space. The Nebula memory management system, based

on a few variable-length segments rather than a large number of fixed-

length pages, appears to be inadequate. A Standard Nebula processor may

have as few as 16 segment relocation registers. Even with very large

pages, a reasonable LISP program's working set is likely to contain many

more than 16 pages, because list-structured data tends to be scattered

rather than contiguous in memory. The obvious conclusion is that the

system will "thrash", spending much of its time moving pages between

primary and secondary memory rather than doing useful work.

One solution to this problem would be to run LISP only on Nebula

implementations with many more than 16 segment registers. There seems

to be nothing in the Standard that precludes building such machines.

Unfortunately, the Nebula memory map structure is designed so that it

must be searched rather than indexed into. Even if all map entries are

cached, each process switch will require the working set of the new pro-

cess to be faulted into the cache, involving many searches of the memory

map. A sophisticated hardware implementation might do these memory map

searches efficiently, using (say) interpolation search, and thereby keep

4 the cost of process switching down to a tolerable level. However, this

approach would add cost an( complexity, and does not seem particularly

desireable even if it could be made to work.

II
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A somewhat more elegant approach, perhaps feasible with the current

memory map design, is illustrated in Figures 1-2. Since the Nebula's

memory management scheme is discussed in some detail elsewhere, the

approach is simply sketched here.

Operating system software maintains a "conventional" page table,

which is accessed by indexing into it with some number of leading bits

of a virtual address. The hardware memory map is used as a cache for a

few of the most recently used page-table entries. Pages are classified

as:

(1) resident in memory and in hardware memory map;

(2) resident in memory, not in hardware memory map; -and

(3) nonresident.

An attempt to reference a page in category (2) causes an

Invalid.Segment trap (or an Invalid.Access trap- see below). The

operating system responds to such a trap by replacing the same hardware

map entry by the entry for the requested page. This scheme is similar

to the one used by MS and Berkeley VAX Unix to make up for the absence

of "referenced" bits in the VAX address translation hardware

[Babaogl u 80].

The Nebula memory map design assigns contiguous virtual addresses

to segments. The only apparent way to map noncontiguous segments is to

separate them by "dummy" segments with access control bits set to 000

(no access). Figure 2 illustrates this. Note that about half the

memory map registers are wasted. I expect that 8 map registers (all

that would be available on a minimal Standard Nebula using this scheme)
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are not enough to give acceptable performance.

Possibly the designers of the Nebula memory management system had

some other more clever scheme in mind, or perhaps they do not believe in

paging. In any event, it would be comforting to know, through analysis

or simulation, that the Nebula can be made to work when the virtual

address space is much larger than physical memory.

3.2. Exceptions and Interactive Debugging

The interpreter in an interactive programming environment must be

prepared to handle certain exceptional conditions itself. For example,

an Illegal.Divisor trap by default should put- the system into

interactive debugging mode, in which the programmer can examine the

state of suspended procedures, modify procedures and data, and perhaps

attempt to resume execution.

With this application in mind, I am puzzled by the Nebula's excep-

tion handling architecture. When an exception occurs and the current

procedure's exception handler state is "defined", the exception handler

is entered by a direct GOTO, without saving the program counter

[STD.p33]. This makes it difficult to resume execution from the point

of the exception. .

With cooperation from the supervisor exception handler, a "resume

program counter" can be made available to the current procedure.excep-

tion handler as follows. The UDLE bit of the PSW should be set, so that

the exception is passed to the supervisor exception handler. The super-

visor handler should save its program counter arguments at an agreed-

upon mewory location and pass control to the procedure exception handler

11-8.8

0
.- .- - -



- -- 

-- 
-.

w
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.U- (using ERP). While this solution seems to work, such a "ritual dance"

should not be necessary.

Interactive debugging presents another interesting problem. It is0 important for the debugger to be able to examine, print and.modify the

suspended state of the computation. For example, a ubiquitous feature

of interactive debuggers is the ability to print a "call trace"- a list

of procedure calls (with their arguments) leading to the current state.

This will require examining and changing previous contexts on the con-

text stack. However, as I discuss in the next section, the Standard

effectively prohibits this.

3.3. The Context Stack

3.3.1. A Problem

The Nebula ISA includes a "structured" procedure call mechanism i-

with hardware-maintained procedure context stacks. Parameters, return

addresses, saved registers, etc., appear in the context stack in an

undefined format. Parameters are accessible only by means of special g

addressing modes, and only the parameters of the currently active pro-

cedure are accessible at all [STD.8.1.3.

It has been remarked elsewhere that this design prevents nonlocal

*references to parameters on the context stack, even though such

references are legal in Ada (or any other language with internal

procedure declarations).

A partial solution to this problem is to analyze the source programt I

to determine which parameters are non-locally referenced, and to pass

such parameters on the SP stack rather than on the context stack. Of

I 
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course, such parameters cannot be referenced using the built-in para-

meter addressing modes; apparently the Nebula's architects assume that

most parameters are referenced only locally.

LISP uses dynamic rather than static scope; that is, a non-local

reference to 'x' is bound to the most recent instantiation of anything ]
named 'x', rather than to the most recent instantiation of the lexically

enclosing 'x'. Because of this scope strategy, almost every LISP para-

meter is at least potentially the target of a nonlocal reference. To

see this, consider any function f that contains a call to an externally

defined function g:

f= Xx. ...(g 17) ...

By examining only f, it is not possible to determine whether its para-

meter x is non-locally referenced. If g is defined by L

g = y. x

then the call of 9 from within f results in a non-local reference to the

parameter x of f, independent of where the declaration of g occurs in

the program. The existence of a nonlocal reference depends on whether g

(or any function actually called by g) contains a non-local reference to

a variable named 'x'.

List allows individual functions to be compiled, and allows com-

piled and interpreted functions to call one another freely. Thus, when

compiling a LISP function, it is not possible to identify and examine

all the other functions it might call, to decide whether a parameter can

safely be placed on the context stack. Consequently, all LISP parame-

ters (or at least copies of them) must be kept in user memory rather
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than on the context stack.

A related reason not to use the context stack concerns garbage

collection. A typical garbage collector operates by "marking" all

accessible objects, and then reclaiming the space occupied by Inaccessi-

ble (i.e., unmarked) objects. It does this by first marking all objects - -"-

referenced directly by any of the variables in some "known" set; then

marking all objects referenced by any of the newly-marked objects; and

repeating this process until no more objects can be marked. Garbage

collection may be initiated by actually running out of storage, or (in

real-time systems) may be performed by a concurrent process.

The set of "known" variables referred to above must include the

parameters of suspended function calls - it is easy to construct exam-

ples in which an object cannot be discarded, but the only reference to

it is from a parameter of a suspended procedure. For example, consider

the following LISP-like program:

f =\x .cond Cx=O- 0 ; t- cons[f[x-l1 ;f[x-1-

g = Xy. cons [f ll]; y]

g Ef (17])

The call f[17] builds a (large) binary tree that is passed as an argu-

ment to g, thus bound to the parameter 'y' on the stack. Suppose gar-

bage collection takes place during evaluation of fill] (called from g).

4 Clearly the object bound to y cannot yet be reclaimed, since it is part

of the result of the call to g; but the only reference to it is the

suspended parameter 'y' Itself. Thus,

*%
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(1) the marking phase of the garbage collector must examine parameters L

on the stack; and

(2) the Standard explicitly prohibits examining parameters in the con-

text stack;

and again we conclude that the context stack parameter mechanism is not

suitable for LISP implementation.

3.3.2. A Proposed Change

The Nebula architecture needs to be extended so a process can exam-

Sine and modify suspended procedure contexts. This should be done with-

out violating protection constraints and, if possible, without doing

great violence to the architecture.

A simple change would make the following possible in privileged

mode:

(1) Flush the context stack cache. This is currently possible in a

backhanded way using LTASK and STASK.

(2) Given a pointer to a context, produce a pointer to the previous

context.

4 (3) Given a pointer to a context, decode, read and/or write its ith

parameter specifier.

(4) Given a pointer to a context, decode, read and/or write its ith

saved register. -

This could be accomplished in two ways. One way would be to modify

STD,8.1 to specify parameter and register representations in the con-
*L

text stack. The access control mechanism of the memory mapping system
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would be used to restrict access to the context stack, as is done now.

The other way would be to introduce new (privileged) instructions. This

approach has the advantage that the representation of contexts in memory

could remain implementation dependent.

These changes have the advantage of giving an upward-compatible

extension of the current architecture. Their principal disadvantage is

that references to previous contexts require assistance from the Super-

visor and thus are relatively inefficient.

For reasons of efficiency, it would probably be unacceptable to use

this mechanism as the standard one for non-local parameter references in

an Ada implementation. However, for less demanding applications like an

interactive debugging package, the mechanism would be quite adequate.

In combination with, say, a shallow binding LISP parameter passing

implementation, which would immediately copy every parameter from the

context into an optimized data structure In user memory [Baker 78) it

could yield an acceptable LISP implementation.

3.4. Preserving Register Values

A common technique for gaining efficiency in a tightly-coded pro-

gram is the use of registers to hold global quantities - for example,

the instruction and argument pointers in a LISP interpreter. Similarly,

the run-time system in an Algol-like language implementation may dedi-

cate a register for use as a display pointer, etc. This use of "regis-

ter global variables" is not supported by Nebula, since the only regis- 6

ter whose value is inherited by a called procedure is the SP itself.

The Nebula's built-in procedure calling mechanism does not require

11-8.13

*- -- -- - T. -, -: - -.--. =. ? - - - - - - .. .. -' -. '



Nebula Report

inherited register values; but for applications that must depart from

the "standard" procedure calling conventions, inherited register values

may be quite important.

The motivation for not inheriting register values seems fairly

clear. The semantics of registers in Nebula corresponds to their easi-

est possible implementation: they are simply locations in memory near

the top of the context stack. Easy implementation does not in itself

justify a feature, however. Allowing register values to be inherited

would add flexibility to the architecture, and should be considered.

3.5. Instruction Set

On the whole, the Nebula instruction set seems adequate for LISP.

Several points deserve specific mention:

1. Auto-increment and auto-decrement addressing modes are not included.

':owever, these addressing modes are not particularly useful in process-

ing LISP's linked-list data structures. Their principal use is in deal-

ing with contiguously allocated structures (strings, arrays, records,

etc.), and in most cases the Nebula's string operations should work

better. An elaborate LISP implementation might be able to use auto-

Increment/auto-decrement addressing to process a cdr-coded list, but the

potential benefits do not seem great.

2. Surprisingly, the Nebula addressing modes do not allow indirection

through a memory location. For LISP this is not a great loss. The

facility might be useful for taking car of a list to which the only

reference was in memory - cdr would of course require indexing. How-

ever, addresses of list structures currently being manipulated tend to
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be kept in registers rather than in meory; and both register indirect

and register indexed addressing modes are provided.

3. The principal deficiency of the instruction set seems to be the ina-

bility to stack/unstack a set of registers in a single instruction. As

discussed in point (2), registers are important in the Nebula, since the

addressing modes treat them quite differently from arbitrary memory

cells. Saving and restoring of multiple registers on the context stack
I

is accomplished in a single machine instruction by the built-in pro-

cedure call mechanism. However, for the reasons discussed above, the I
context stack is inappropriate for use by a LISP interpreter. Thus,
registers must be saved/restored individually, a time-consuming process. .

4. Conclusions

Obviously LISP and other VHL languages can be implemented on the

Nebula. However, the salient "structured" features of the architecture

-most notably its context stack procedure call mechanism - are inap-

propriate for such languages. The problems with non-local parameter

references and garbage collection are less serious for Ada than for

LISP, but still exist. I believe the architecture could be considerably

improved by some simple additions and modifications. Specifically,

1. While Nebula has adequate address space, its memory mapping scheme

appears inadequate for programs whose virtual memory requirements exceed

the available physical memory. It is important to know whether some

"clever" paging scheme like the one described above would give accept- -.- Cl

able performance with only the 16 memory map registers required by the

Standard. Simulation results would certainly suffice, and may already

18
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exi st.

2. The most important deficiency of the Nebula ISA is the inability to --
examine suspended procedure contexts. This problem could be lessened by

defining the representation of parameters and registers in the context

stack and providing a way to flush context stack cache, as discussed

above.

3. Many applications could benefit from a more flexible treatment of

the registers. In particular, register values should be inherited by

called procedures, and instructions to save/restore sets of registers

on the SP stack should be provided.
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1. Introduction

A database is a collection of time varying information that

models some segment of the real world. A database management

system (DBMS) is that collection of programs that provides access

to a database in a manner that guarantees the consistency of the

stored data. An application program is a user written query or

update program that interacts with the database through the DBMS.

The DBMS is viewed by an application program as a virtual

machine.

Implementation of DBMSs has been an active subject of

research. Although many database management systems, both exper-

imental and otherwise, have been implemented, little is known

either about the implementation experiences or the operating sys-

tem and hardware support required by a DBMS. Most of the known

information is speculative and/or based on sporadic experiences.

In this report we discuss the suitability of the proposed

military standard Nebula computer for the implementation of

DBMSs. Our evaluation of the architecture is based on the docu-

ment MIL-STD-1862A titled "Military Standard NEBULA Instruction

Set Architecture". In Section 2 of this report we characterize

databases and DBMSs in some detail. Section 3 contains a discus-

sion of the implications of the proposed instruction set on the

implementation of DBMSs. In Section 4 we discuss the implication

of the machine organization, particularly the virtual memory and

the I/O sub-system. In Section 5 we describe the features that

an operating system must provide in order to permit the success-

ful implementation of a DBMS on the Nebula computer. Section 6

L
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provides a summary of this report.

2. Background Information

2.1. Characterization of Databases

There are several criteria that can be used to characterize

databases and the programs that manage them. Our purpose here is

to indicate to the Nebula machine designers the type of the data

to be stored and the type of actions to be executed on the data.

We therefore will consider the following points in characterizing

databases: database type, database size, and access patterns to

the database.

By database type we mean the type of the data items that are

accessed and manipulated by the DBMS software and the application

program. An example is numeric data. By access patterns to the

database we mean the frequency of each type of access, e.g.

numerous short updates and few long retrievals.

Most existing databases are formatted. That is, they con-

sist of many records each of which is logically viewed as a fixed

length string. Examples of formatted databases are business

databases such as those used in the banking and airline reserva-

tion systems; statistical databases such as the census database;

picture databases such as those used to store satellite photo-

graphs; and databases used to store graphical information in

design automation systems. Unformatted databases typically con-

tain documents, such as law briefs.

Some databases contain only (or almost only) data of one

type. For example, a VLSI design database will contain only
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geometric objects, a statistical databases will contain numeric

data almost exclusively, and a business database will contain

both numeric and textual data.

Database sizes vary considerably from one database to

another. For example, to store the results of a small statisti-

cal survey only a few thousand bytes will be required. On the

other hand, a census database will require hundreds of reels of

tapes for storage.

Finally, regardless of the data model employed by the DBMS

there are a number of operations, both update and retrieval, that

require multiple scans of data segments and other operations that

require only a single scan. Furthermore, under certain condi-

tions it is known ahead of time what the reference string (or

part of it) is. Such knowledge can be used to intelligently

fetch data from mass storage and cache it.

In summary, databases of many different sizes and data types ...- -

exist. Except for some database types, most databases will have

both numeric and non-numeric data. Most DBMSs incorporate

knowledge about the behavior of the programs to intelligently

access data on mass storage. Other than operations on specific

data types (such as add two integers or compare two strings),

which the architecture might support directly, the differences ,

between the database types are apparent only at higher levels,

e.g. the operating system or the database management system

itself.
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2.2. Characterization of DBMSs

This discussion is based on our experiences with the imple-

mentation of a CODASYL DBMS here at the University of Wisconsin,

discussions with members of the groups that designed, imple-

mented, and evaluated the performance of the relational DBMS

INGRES at Berkeley and the relational DBMS System R at the IBM

San Jose research facility.

All three systems are fairly large, requiring between 100

Kbytes and 1 Mbyte of main memory to run. However, of this code

only a small amount is heavily used. Measurements of one version

of INGRES have indicated that most of the system execution time

is spent in a very small portion of the code - about 10 Kbytes.

This fact served as one of the design bases for the Britton Lee

database machine. Our experience with the QQQ DBMS here at

Wisconsin is similar.

Both INGRES and QQQ are not full fledged DBMSs and serve

mainly university user communities. System R, on the other hand,

implements all the data management functions required of a com-

mercial DBMS. It's busiest component is the Research Storage

System (RSS) which contains the access methods of-System R. The

present implementation of the RSS uses approximately 250 Kbytes.

Since most of the code in a DBMS is used infrequently, DBMSs

are structured as a collection of segments, some of which are

resident in main memory for long periods of time, while others

are brought in on demand and rarely.
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3. Implications of the Proposed Instruction Set

In the previous section we have shown that databases can

contain data of several data types, in particular numeric and

textual. The Nebula instruction set seems to be well suited for

processing data of both types. There are, however, a number of

comments that we wish to make about the string processing

instructions (MOVBK and CMPBK).

In order for database systems to efficiently support access

and manipulation of formatted and unformatted textual data, an

efficient implementation of both these instructions is very

important. Their implementation should permit the comparison of

two records, or two fields within the same or different records,

in the minimum amount of time. The Nebula manual specifies that

two strings are to be compared item by item. While this is the

correct logical view of comparing two strings, the physical

implementation need not adhere to it.

There are several improvements that could be made. For

example, the microcode could fetch data from the main memory in

blocks, where a block is defined to be the maximum number of

bytes that can be transferred from the main memory to the proces-

sor in one operation. The microcode would still compare the two

strings item by item, but if a "wide line" existed from main

memory to the processor, multiple items could be compared for

each memory access performed.

Currently, there are three string instructions: CMPBK,

MOVBK, and MOVM. The COMBK instrcution essentially will check

for the equality of two equal length strings. A side effect of
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the instruction is a check for inequality. In order to facili-

tate the efficient implementation of string operations the COMBK

instruction should:

(1) Allow for the application of each of the six relational

operators (equal, not equal, less than, less than or equal,

greater than, and greater than or equal).

(2) Allow any of these operations to be applied to strings of

varying lengths. This is particularly important for unfor-

matted databases. We believe that one implication of text

and word processing by comouters is that more support will

be required of computers for string operations, particularly

on varying length strings.

(3) If the string instructions are to remain unchanged, one sim-

ple, and helpful, modification would be to have the COMBK

instruction return the position of the first nonequal bytes

in the two strings compared.

The MOVBK instruction should also be implemented in such a

way as to process as many bytes as possible in each loop execu-

tion of the microcode.

Finally, although many alternative concurrency control stra-

tegies have been proposed for database systems, each mechanism

requires the ability to control access to some code in a critical

section. The SETBIT instruction seems to be an adequate low-

level primitive for this purpose. While it might be convenient

to have a higher level concurrency control primitive in the
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instruction set, the "optimal" concurrency control mechanism

seems to vary with the type and size of the database being

accessed. We do not see a need for a large number of indivisibly

executed instructions.

..
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4. Imications of the System Architecture

The following discussion is predicated on two assumptions:

there will be an ample amount of main memory in any Nebula confi-

guration; and, segments are defined dynamically by the operating

system, perhaps based on previous usage of the code.

4.1. Memory Management

In Section 2.2 we pointed out that a DBMS (regardless of the

data model used) can be implemented as a collection of segments,

one of which consists of a small part of the total amount of the

code and is the most heavily used. The organization of the ,,ir-

tual memory system in the Nebula computer lends itself very well

to this type of an implementation. One segment can be defined to

be that procedure which is the most heavily used. The operating

system can guarantee that this segment remains resident in memory ..

at all times. The more exotic functions provided by the DBMS can

be stored on mass storage. When a call t5 one of these routines

is made, the DBMS can inform the operating system exactly which

routines should be brought in (it may be the case that a call to

one of these routines will involve internal calls to a number of

others). The operating system can then, dynamically, form a seg-
4

ment, fetch the routines from mass storage, and bring the segment

into main memory.

The nicest feature of the memory management system is that

once a segment has been brought into main memory, accessing it is

very cheap because of the simple mapping scheme from a virtual

address to the corresponding physical address. Having a large
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amount of main memory would enable the operating system to keep

the heavily used portions of code in memory for long periods of

time taking advantage of this feature.

4.2. Limitations of the Memora Management System

A user interacting with a DBMS will, during the lifetime of

a single transaction (application program), be accessing data in

several files. Ideally, in a computer that uses segmentation,

one should assign each data file to a segment. Clearly, this is

not a possibility for the proposed Nebula architecture because oE

1) the need to bring a segment into memory in its entirety, and,

2) the small number of segments that a user task can have associ-

ated with it. The consequence of this design decision is that

the DBMS is forced to perform several functions that would other-

wise be performed by the operating system (e.g., buffere manage-

ment). Nowadays, all DBMSs duplicate various operating system

functions. Researchers have recently recongnized this as a prob-

lem and have only begun to address some of the issues .(see Sec-

tion 5.2).

If each user task could have associated with it a large

number of segments then it will be possible to implement a data-

base management system that uses one segment for each file or

relation. In principle the number of segments should be

unbounded, although since at any given point in time only a few

segments will be used, the number of registers that hold segment

addresses need not be larger than say 100. Such an approach can

lead to a very clean database system implementation but will be
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impossible in the currently proposed Nebula architecture since

segments are not paged.

4.3. Data and Code Sharin'..

An important service needed by a DBMS is the ability to

share both code and data. In general, this is a capability pro-

vided by the operating system and we shall discuss it in more

detail in Section 5. The memory management hardware facilitates

sharing of segments through the capability of mapping two seg-

ments to the same physical address.

* 4.4. I/O Subsystem

The I/O subsystem of the Nebula architecture is very well

designed and should not present any problems with regard to data-

base system implementation. In order for the Nebula to interface

with other computers in a distributed database environment or

with a database machine must have a communications subsystem.

The sophisticated channel capability of the Nebula processor

makes it possible to place much of the communications software in

the channel itself. This should significantly reduce the burden

placed by communications protocols on the host.

5. Imact of the Nebula Operaing Syte

While control of an operating system for the Nebula proces-

sor is quite obviously beyond the control of the machine archi-

tects, many of our earlier comments on the design of the instruc-

tion set and systems architecture with regard to the implementa-

tion of a DBMS would loose a great deal of significance if the
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operating system implemented on the Nebula processor did not pro-

vide certain features. In this section we describe the operating

system support that we feel is crucial for the successful imple-

mentation of a DBMS. The implementors of an operating system for

the Nebula processor are strongly encouraged to read [Stone8l].

5.1. Efficient Inter Process Communication (IPC) Facility

A basic mechanism that all IPC facilities provide is a means

by which a process can receive information (e.g. queries or

results) from other processes on the same or different proces-

sors. Generally, this facility provides the process with the

ability to declare a publically addressable name corresponding to

a logical communications channel that it listens to for requests.

While the UNIX pipe facility provides a similar facility, pipes

only provide a mechanism by which "related" processes (i.e.

father-son pr son-son) can communicate, not unrelated processes.

Efficient IPC communication facilities are important to DBMS

implementation for a variety of reasons. Their most important

role has to do with the implementation of the database system

itself. In Figure 1 the structure of INGRES, a relational DBMS,

is shown...

4
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Figure 1
Process Structure of PDP-11 INGRES

Because of the limited address space provided to a process by the

PDP 11 architecture, it was necessary to divide the INGRES

software into five communicating processes. As shown in Figure 2

INGRES on a VAX 11/780 runs as two processes.

, MON ITOR VAX INGRE S

Figure 2
Process Structure of VAX 11/780 INGRES

The MONITOR process acts as a terminal monitor to provide a

high-level user interface. The second process, labeled VAXINGRES,

is responsible for query parsing and execution. Note that while
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all five INGRES processes could have been compressed into a sin-

gle process on the VAX 11/780 it was left as two processes so

that the MONITOR process could be replaced with a user program

(or perhaps an alternative user interface) as shown in Figure 3. _

USER VAXINGRES "
PROGRAM-i

Figure 3

Another application of IPC facilities in database system

implementation is shown in Figure 4. This figure depicts the

organization of QQQ. Each user program that is accessing the

database corresponds to one user process. When a user initiates a

database call it is sent to the QQQ process for execution. By

centralizing all database access in one process that is accessed

through an IPC mechanism we were able to significantly simplify-

ing buffer management and concurrency control in the database

system.

Finally, there are two other important applications of IPC
I 0

mechanisms in database systems: database machines and distri-

buted database systems. In both these cases it is crucial that

processes on different machines be capable of communicating each

11-9.13
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US ..

USER
PROGRAM [ ..

.4 .

Figure 4
Process Structure of QQQ

other in a straightforward manner. Each Nebula processor that is

a node in a distributed database system must be able to communi-

cate with other sites in order, for example, to execute a query-

that references data that is distributed at multiple sites. If a _

Nebula processor is used as a front-end host to a database " -

machine, then in order for the database machine to return results

to the user that submitted the query, the process corresponding -- -

to the user must have a "name" to which that the database machine

can send results.

11-9.14
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5.2. Duplication of Effort L

One problem that frequently arises in attempting to imple-

ment a database system is that the operating system does not use

the appropriate strategy in providing a service to the database

system. The consequence of this is that the database system

designer is forced to provide the appropriate function in user

space. A typical example is that of buffer management for data

pages. Most operating systems manage Input/Output page buffers

(data brought in from a disk) with a Least Recently Used (LRU)

strategy. While the LRU strategy may be an excellent strategy

for many applications it is a very poor strategy for the access

patterns displayed by some database operations. Ideally, the

operating system should accept "hints" from the database system

on how to manage the buffer pool. The DBMS has some knowledge

about how the blocks in a file will be referenced based on the

user query and the access method (e.g. secondary indices)

being used to execute the application program.

5.3. File System Organization

The operating system component that is perhaps most crucial

to the implementation of a successful database management system

is the file system. There are two popular approaches to file

system design. The first is the "UNIX-style" approach in which a

file is viewed simply as a character array of dynamically varying

size. The second approach, of which the IBM VSAM organization is

an example, is for the file system to understand the concept of a

record and provide a structured file with multilevel directories,

6q
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hashing, and secondary indices to the database system. As we will . .

discuss below, a database system needs this second type of file

system. Furthermore, implementing this type of file system on top

of a character array object is generally not very efficient.

Two problems arise when a database management system

attempts to provide a structured file organization on top of a

character array object. The first has to do with physical con-

tiguity of blocks. Since character array objects are normally

expanded a block at a time, the result is that the blocks

comprising a file are physically scattered across the entire disk

volume. Hence logically adjacent blocks in the file are almost

never physically close (ie. on the same track or same cylinder).

Since database systems frequently perform sequential scans of an

entire file, the cost of such a scan (due to increased head

movement) is significantly higher than if the blocks were stored

physically adjacent to one another.

A second problem that arises when a database management sys-

tem attempts to provide a structured file organization on top of

a character array object is that multiple levels of tree struc-

tures are introduced. For example in UNIX, the blocks that

0 comprise a file are kept track of in a tree (of indirect blocks)

which are themselves pointed to by a block (the i-node). A data-

base system that constructs a multilevel directory structure (ie.

* an ISAM file) on top of this organization adds yet another level

of tree structure. Clearly one tree structure that directly maps

a structured record-oriented onto a mass storage will be signifi-

cantly more efficient.
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Finally, the file system should support a varying block size

for data transfers. This would permit database systems which

frequently deal with large volumes of data to transfer a track at

a time while other application programs could transfer data in

smaller units.

5.4. Data Sharin

At a given point in time there can be several users

interacting with a database through the DBMS. It is useful in

many instances to permit the user processes to share data with

each other as well as with the DBMS. As pointed out in Section 4

the memory management system can support this data sharing. Tiow-

ever, this capability must also be supported by the operating

system through the implementation of semaphores or similar meas-

ures that guarantee data integrity. Such A facility is lacking

in a number of operating systems, for example UNIX.

6. Summary

j I

In this discussion we have presented our views on the suita-

bility of the Nebula architecture for implementing a database %

management system. In general, the instruction set and systems

architecture should not present any severe obstacles to such an

implementation. In terms of the instruction set, the most cru-

cial thing that we uncovered was the fact that the CPMBK instruc-

tion did not permit for arbitrary comparisons of two character

strings. The main limitation of the system architecture of the

Nebula processor appears to be the fact that since segments are

not paged the maximum size of a segment is limited to the

11-9.17
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physical memory size of the processor. This prevents one from

designing a database management system in which each relation,

for example, corresponds to a segment. While this is not neces-

sarily critical it does limit the options of the database systems

architect. We have also provided a broad overview of the types

of services required from the operating system.

At about 1986, the time the Nebula is expected to make its

entry to the market, we believe that many of the data management

activities handled by general-purpose computers today will be

off-loaded to database machines. However, some data management

functions will be implemented on general-purpose computers. This

is particularly true for small and medium size databases. Our

evaluation does not include a discussion of the inter-processor

communication facilities in the Nebula for various reasons. How-

ever, this will be an important feature of machines at that time.
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THE NEBULA ARCHITECTURE AND MULTIPLE-PROCESSOR SYSTEMS

by Dr. Marvin H. Solomon
Computer Sciences Department

University of Wisconsin
1210 W. Dayton St.
Madison, WI 53706

1. INTRODUCTION

This report contains a study, comissioned by Digicomp Cor-

poration, of the Nebula architecture [1] as regards its suitabil- .

ity for multiple-processor configurations. Throughout this docu-

ment, "Nebula" refers to the instruction-set architecture

described in MIL-STD-1862A, 1 July 1981. The opinions expressed

herein are solely those of the author and do not necessarily

represent thd University of Wisconsin or Digicomp Corporation.

Multiple-processor systems are -often classified* as

"tightly-coupled" and "loosely-coupled". However, these terms "

are used in very different ways by different authors. Therefore,

I will use the following classification instead:

A computer network is a collection of largely autonomous

processing systems connected by a communications network. Nodes

may be very different hardware and software systems, usually

designed independently, with communications hardware and software

added "on top". They may be geographically distributed over dis-

tances ranging from a few meters (local-area networks) to many

thousands of kilometers. Communications bandwidth usually ranges

from 10K to 10M bits/sec for local area networks and from 300 to

56K bits/sec for geographically distibuted networks. Limitations

of bandwidth and delay effectively limit the frequency of in-

II-10.1
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teractions between process on different nodes to the range from

-6one to 10 per second (that is, from once every few seconds to

once every few days). I shall not have much to say about comput-

er networks in this study.

A multicomputer also consists of independent computer

modules connected by a communications medium. It may be homo-

geneous (all nodes the same) or heterogeneous in hardware,

software, or both. Nodes must be physically close (same room,

same rack, or same board). However, it differs from a local area

network in two important ways: First, the communications

hardware and protocols must be designed to keep both communica-

tions overhead and delay within the bounds necessary to allow in-

teractions at the rate of 103 to 106 per second. Second, it is

designed as a unified system to provide the same sort of facili-

ties as are provided by a single processor, but with higher

throughput, shorter delay, or greater reliability.

A multiprocessor consists of several processors sharing a

common memory. Here, very close interaction is possible (upwards

of 106 per second). Multiprocessors may be MIMD (multiple in-

struction stream/multiple data stream--processors operate asyn-

chronously), SIMD (single instruction stream/multiple data

stream--processors operate in "lock step" on different parts of

memory) or pipelined (which might be called MISD). I shall con-

centrate on MIMD multiprocessors.

Of course, the distinctions are not sharp and many hybrids

are possible. For example the EDEN project at the University of

Washington is investigating ways in which personal computers in a

I-10.2
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local area network can be used, when otherwise idle, as part of a

multicomputer. Cm* at Carnegie-Mellon University [2,3,4,51 is a

multicomputer, but a memory mapping function in the interconnec-

tion network allows the memories of the component modules to be

addressed as if it were a shared common memory.

In this report, I will confine myself to considerations af-

fecting the suitability of the Nebula architecture for multipro-

cessors and multicomputers, although many of the same considera-

tions that concern multicomputers also concern networks.

2. MULTIPROCESSORS

In a multiprocessor, multiple processing elements access a

common random-access memory. The memory may be multi-ported or

may be accessed by a shared bus. The processing elements may be

"bare" procesors or they may each have a local memory cache " -

and/or local memory visible at the architcture level. Clearly,

the aspect of the Nebula architecture most directly related to

multiprocessor configurations is the memory mapping scheme.

Memory mapping presents to the processor a "flat" virtual

address space of 232 bytes. This space is divided into two

halves by the high bit of the address, and each half is further

subdivided into several "segments". Each address up to some max-

imum in each half lies in exactly one segment; that is, there

are no "gaps" between segments. Each segment is independently

protected and mapped to a block of physical addresses. The

number of segments in each half is implementation-dependent, but

II-io. 3
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the standard requires at least 16 segments in each half. Seg-

ments may be divided on any 8-byte boundary (in both virtual and

physical space), although the standard allows an implementation

to coarsen the grain up to 256-byte boundaries. Mapping for ei-

ther half may be turned off, so that virtual addresses (with the

high bit stripped) are treated directly as physical addresses.

The map for each half is descibed by a table. The physical ad-

dress of this table is stored in a fixed physical location (FF824

for the high (supervisor) half and FF828 for the low (user)

half). The supervisor map pointer may only be set by storing

into the physical location. The user map pointer my be saved and

restored by special instructions (STASK and LTASK). In addition,

individual map entries in the currently active maps may be modi-

fied by the REPENT instruction.

In a multiprocessor, all processors may have their addresses

mapped in the same way, or a separate map may be maintained for

each processor. The Nebula architecture is carefully defined to

allow a separate address space for each process (although sharing

is also allowed). If all processors used the same map to resolve

virtual addresses, two processors could not simultaneously run

processes with different address spaces. I shall therefore as-

sume that each processor must have an independant memory map.

Nonetheless, there remains the choice of whether mapping is

done locally on each processor, with physical addresses sent to a

shared memory unit, or in a central shared memory mapping unit.

In the latter case, a line may be reserved to indicate to the

memory unit whether a given address is to be mapped. Sharing the
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memory mapping unit allows many components, such as the compari-

tor and ALU required for mapping to be shared among ,processors.

However, as we shall see the mapper still has to maintain

separate copies of many registers. There are other considera-

tions, concerning concurrency and arbitration, which I will dis-

cuss later. Mixtures of these approaches are also possible.

With mapping done by the processor, the memory could add yet

another level of mapping, translating a "physical" address from

the processor into a (truely) physical memory address. With a

shared mapping unit, an extra line can be reserved to specify

that an address is not to be mapped. To determine the feasibili-

ty of these alternatives, I have made a careful survey of all

places in the architecture where physical addresses are used.

2.1 Physical Addresses

The Nebula architecture is designed so that memory locations

are almost always specified by virtual addresses. However, phy-

sical addresses come into play in several ways: The architecture

specifies some physical addresses specifically as having special

meanings; it specifies that certain locations contain the physi-

cal, rather than logical addresses of other locations; it de-

cribes some instuctions that expect physical addresses among

their operands; and it partially specifies the behavior of the

processor with regard to caching of translation information.
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Reserved addresses

The architecture reserves the first megabyte (addresses 0-

FFFFF) of physical memory for "I/O space". These addresses are

to be used for "communication with I/O devices". In addition,

•-several processor registers, such as the map pointers described

earlier, the processor status, the SVC and OPEX Regsiters (which

contain the virtual addresses of vector tables), and timer regis-

ters are located at assigned addresses in I/O space [p. 64].

The standard also assigns 256 addresses immediately follow-

ing I/O space (100000-100OFF) to interrupt and trap verctor

words, and some processor registers, such as the Software Inter-

rupt Register, and the Kernel and Reset/IPL Save Area Pointers.

I feel that this assignment is particularly unfortunate, as I

will explain further below. Since many of these locations ru.-t

be treated as special hardware registers rather than ordinary

memory locations, I will use the term "I/O space" to include

these locations.

Stored addresses

One place that the architecture requires a physical address

to be stored is in a map pointer register, although the STASK and

LTASK instructions copy this register to or from another location

and the MAP instruction may be used to compute a physical address

and store it in memory. IOC segment registers may contain physi-

cal addresses, although the standard is unclear on this point

(see the discussion of SETSEG below). The map tables themselves

contain values that are the difference between the physical and

11-10.6
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virtual addresses of segments. The save area pointers (100020

and 100044) contain the physical addresses of save areas, which

themselves contain physical addresses. Finally, mapping may be

independantly disabled for each half of the virtual address

space, in which case all addresses are interpreted as physical

addresses. In particular, if the map pointer loaded by a power

restore, reset, or IPL event has its low two bits clear, the re-

stored context pointer will be treated as a physical address.

Instructions that use physical addresses

The LTASK instruction has an operand that is the (virtual)

address of a two-word block of memory that is copied to physical

addresses FF804 and FF828. As mentioned. above, the second of

these words will then be interpreted as a physical address.

The MAP instruction has an operand that is to be interpreted

"in the same way that the contents of a map pointer register is

interpreted" [p. 136]. Presumedly, this means that it is to be

interpreted as a physical address.

The first operand of the SETSEG instruction is mapped as a

virtual address, but must map to a physical address of the form

XXXDO where X denotes any (hex) digit and D is 1, 2, or 3. If

certain access checks pass, the processor loads this location

with "implementation dependent mapping information...sufficient

to enable the IOC to distinguish valid virtual addresses with the

(segment selected by the second operand] and to relocate them to

the physical memory assigned to the segment, as specified by the

CPU map entry" [p. 138]. It is not clear what happens if the map

1 1
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entry in question changes before the IOC is called upon to map

addresses within the segment. Does it use the map entry current

at the time when the mapping is aone, or is the mapping bound at

the time the SETSEG instruction is executed? The former in- -

terpretation causes some problems: If the CPU map is changed,

the portion of virtual address space specified by the second

operand may no longer correspond to a unique CPU map entry (be-

cause segment boundaries have been rearranged). Moreover, the

latter interpretation allows the CPU the useful option of "hand-

ing over" a segment to the IOC and then removing it from its own

map (either by changing its map table or by loading a different

tack with the LTASK instruction) while the IOC is performing the

operation. Therefore, I will assume the latter interpretation.

Under this interpretation, the "implementation dependent" infor-

mation stored must be equivalent to the physical address of the

segment and its bounds (as virtual addresses).

The REPENT instruction loads a map entry. Since a map entry

contains the difference between a virtual and phyisical address,

the source operand of the REPENT instruction should have this

form.

Caching

The standard explicitly allows the mapping tables to be

cached and states when the cache must be flushed (i.e., at what

times the mapping tables in main memory must be made consistent

with the translation cache)--namely, after any LTASK, STASK, or

REPENT instruction.
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2.2 Virtual Addresses to Mememory L

Let us suppose that processors communicate with memory

through virtual addresses. In this scheme, one memory mapping

unit is shared by all processors. A-virtual address from a pro-

cessor is tranlated by the mapping unit to a physical address,

which is then passed to the appropriate RAM bank. If the phyis-

cal address is in I/O space (less than 100000 hex), it is sent

instead to the appropriate device.

It is possible for the mapping unit to maintain a different

map for each processor. When a virtual address v arrives from

processor i, the processor number (i) is latched in the mapping

unit. Let us ignore, for the moment, the possibility of caching.

A separate copy of the Map Pointers is maintained for each pro-

cessor. The values of i and the high bit of v are used to select

a Map Pointer register in the mapping unit. If this register

specifies relocation and/or protection (bit 31 set), it contains

the physical address of a mapping table. This physical address

is used to obtain the mapping table entries from RAM to check and

translate the virtu'al address v, obtaining a physical address p.

Finally, p is sent to RAM (or the appropriate device) for the ac-

tion (read or write) specified in the original request from the

processor.

Suppose the processor attempts to inspect the Supervisor or

4 User Map Pointer itself. In this case the physical address p ob-

tained by the above calculation is FF824 or FF828, respectively.

Since this address is in I/O space, it is sent to theappropriate
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device, which in this case is the mapping unit itself. The map-

ping unit responds by selecting the correct internal register

based on the value of p and the latched value of i (the processor

number). Thus each processor thinks its Supervisor Map Pointer

is at physical address FF824, but different processors may find

different values there. Similarly, each processor may update its

map Pointers without affecting others.

Other registers, such as the PSW (FF8OC) and the Auxiliary

Status Register (FF820) must also be maintained as multiple

copies. Registers such as timers and SVC and OPEX Vectorl j
0 Pointers could be shared among processors, or could be maintained

as private copies, at the option of the implementation.

Now consider what happens if the mapping unit caches the map

tables. In the single-processor case, the cache can be an entire

map or a selection of some entries, although in the latter case,

each entry must be augmented by the virtual lower bound (or

length) of the segment. (A map entry normally contains only the

upper Sound; the lover bound is upper bound of the previous en-

try.) A virtual address that falls within the bounds of a cached

entry can be resolved without going to memory. In the multipro-

0 cessor case, each cache entry (or table) must also contain the

processor number. A cache "hit" occurs if the virtual address is

in bounds and the processor number matches.

*It may be worthwhile to make a special case of the instruc-

tions REPENT, STASK, and LTASK. The REPENT instruction accesses

its operands in the usual manner and then sends a special command

to the mapping unit specifying the map number (0 or 1), the seg-
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ment number, and the 64-bit value to be placed in the map entry.

The STASK instuction sends an address, which is translated to a

physical address p in the usual manner, and a special signal that

directs the memory unit to send the User Map Pointer correspond-

ing to the sending processor (as well as the Task Context

Pointer) to RAM at address p. The LTASK instruction is treated

similarly.

If a central mapping unit caches translation tables but does

not have special commands for REPENT, STASK, and LTASK, it must

understand a signal that directs it to flush the translation

cache corresponding to a given processor.

Note that under the scheme just described, the processor al-

ways communicates with memory through virtual addresses sent to

the mapping unit. The processor never generates physical ad-

dresses.

2.3 Physical Addresses to Memory

In the above scheme, one mapping unit is shared among all

processors, but it generally treats each processor separately.

An alternative is to associate a separate mapping unit with each

processor. The translation algorithm is almost exactly the same.

The only difference is that the processor number need not be

latched on each reference, but can be "wired in".

,6
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2.4 Interrupts and Traps

When an interrupt or trap occurs, the processor goes through

roughly the same sequence of operations that occur on a procedure

call, execept that the entry point of the "procedure" is taken

from a specified location whose physical address depends on the

nature of the trap or the device that is interrupt . . For I/O

devices, the use of a physical address is not particularly

onerous, since the same routine will probably be used to service

an interrupt from any given device, regardless of which processor

executes it. However, this does represent the only case in which

a processor must bypass memory mapping and send a physical ad-

dress directly to memory. There is also the question of which

processor gets the interrupt. I suspect that in most applica-

tions, the binding of I/O device to CPU will be fixed. Nonethe-

less, the architecture only leaves room for interrupt vectors for

10 distinct devices. Either we are restricted to at most 10 dev-

ices regardless of the number of processors, or these locations

must be maintained in multiple copies, much as the Map Pointer of

PSW is maintained in the scheme outlined above.

For processor interrupts and traps, the problem is worse.

For example, an invalid memory access causes a trap to the pro-

cedure whose address is stored in physical location 10000C.

Since different processors may be executing quite different

processes when such a trap occurs, it is likely that they will

want to establish different trap handlers. There are two solu-

tions: We may resign ourselves to having one routine for all
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memory management traps. Since the Context Pointers are (poten-9

tially) different for different processors, the routine could

tailor its actions according to values ultimately accessed via

these pointers. This solution seems to abandon many of the ad-

vantages that the exception-handling mechanism of the Nebula ar-

chitecture provides. The other alternative is to maintain multi-

ple copies of physical memory locations such as 10000C.

Some of the "Interrupt Vectors" are not interrupt vectors at

all. For example, the Software Interrupt Request Register 1
(100004) has the side effect, that storing into it can cause an

interrupt. It is clear that this register cannot be implemented

in RAM. It is also clear that there must be a separate copy of

this location for each processor, or else there would be no way

of knowing which processor to interrupt when the location had its 0

contents altered.

All of these considerations imply that locations 100000 to

1000FF of physical memory must be treated very specially. I have

no idea why these particular locations were not mapped into I/O

space or why only 256 bytes were dedicated to vectors, whereas

one million bytes were dedicated to device registers. I strongly .:

recommend that these assigned locations be moved to I/O space.

Otherwise the memory controller hardware is significantly compli-

cated: Instead of simply testing whether the high order 12 bits

are all zero (in fact, the standard allows physical memory space

to be limited to 24 bits, so that only the high 4 bits need be

inspected), the controller must do a comparison to determine

whether to treat an address specially.

11-10.13
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2.5 Other Considerations

Interprocessor Control Under this scheme, there is no way for

one processor to control another by modifying its map pointer

without extending the architecture. However, it could modify the 6

map table itself using the REPENT instruction, since the REPENT

instruction uses a map pointer operand rather than the processor

map pointers. In the presence of caching, their are two alterna-

tives: A REPENT by one processor could cause a flush of all af-

fected caches (or more likely, all caches, since it is not so

easy to tell which ones might be affected), or a REPENT by one
qI

processor that affects a map table of another processor might be

declared "undefined" and avoided by software.

Connections to Memory and Other Devices If an address maps to

I/O space, the mapping unit must dispatch the request to RAM, a

CPU, an I/O device, or itself, depending on the specific address.

If processors communicate with the mapper using a shared bus,

some addresses must be extended by a processor number, since mul-

tiple copies of an address may exist.

Arbitration Since each processor has its virtual addresses

resolved independantly, multiple processors can do the address

translation concurrently. If the resulting physical address p

selects RAM, it is sent to RAM over a shared bus or directly to a

multiported RAM bank, where competing requests from different

mapping units are arbitrated. These requests may be translated

requests from the CPU's or they may be requests from the mapping
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units themselves, for example for mapping table entries. Simi-

larly, some scheme is required to arbitrate amound competing re-

quests to an I/O device. If a virtual address from the CPU

translates to one of the Map Pointers, it can be handled directly

in the mapping unit (although it may generate a cache flush that

requires access to RAM).

3. MULTICOMPUTERS

The suitability of the Nebula architecture for use in multi-

computers is almost entirely determined by the IOC structure.

Unfortunately, this section of the standard is the most poorly

written. The IOC seems to have been designed with existing

hardware peripherals in mind, but very little hint is given what

these peripherals look like. In particular, there are numerous

references to "1553B" but no cross-reference to a place where the

reader can find out what "1553B" is. There are also cryptic

references to "serial point to point" and "parallel point to

point" channels. The instruction set for the IOC is surprisingly

elaborate. There are features whose purpose I can only guess at.

Once again, I suspect that some of these features are present to

accomodate uspecified existing hardware.

My experience on the Arachne (formerly Roscoe) project [6]

has taught me that the most important feature of a processor for

a multicomputer (other than those features, such as memory

management, important in any general-purpose computer) is a good

front-end processor that can handle communications. At the very
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least, the front-end should be able to carry out the low-level

details of whatever communications protocol is in use concurrent-

ly with the main processor. The IOC design is missing two impor-

tant features required to do the low-level protocols: The less

important omission is bit-manipulation instructions to compute

checksums and perform bit-stuffing. There are logical operations

and shifts, but they are not sufficiently special-purpose to do

the kind of manipulations required, for example, for HDLC in a

reasonable amount of time. On the other hand, these operations

would most profitably be offloaded to the communications device

itself. (There already exist chips that do the bit-stuffing and

CRC calculations required for HDLC).

The more serious omission is some sort of timer support.

All reliable protocols I know of require some sort of timeout.

Since the IOC would be doing nothing but controlling communica-

tions, the timer support could be extremely primitive: a simple

time-of-day clock would suffice. The ideal support would be the

same kind of interval time as is provided to the main CPU: a re-

gister that is decremented periodically and interrupts the IOC

when the count drops to zero. This kind of timer could be simu-

lated using a time-of-day counter as follows: To schedule an

"interrupt" n "ticks" in the future, the processor could read the

clock, add n, and store the result in a local variable, say

"nextevent". The processor would then perform its other duties

on a "round-robin" basis, periodically comparing the clock

against "next event". When the clock passes "next event", the

processor would schedule the task associated with the timeout

I
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event. Communications protocols are typically characterized by a

requiring, at any one time, that a small set of simple (and

fixed-length) tasks be performed.

Unfortunately, the standard associates the time-of-day clock

with a fixed physical address. The only way that the IOC could

gain access to the clock would be for it to be mapped into the

Program, Message, or Data Buffer segment. However, the standard

prohibits mapping addresses less than 100000 into these segments

(section 13.4, p. 48), and the timer is at location FF840 in I/O

space. I therefore strongly recommend that some sort of time-

of-day clock (at the very least) be made accessible to the IOC.

By the way, the standard specifies that the time-of-day

clock be incremented every 10 msec, which seems to be a rather

strange value. A resolution of at least one millisecond would

seem to be crucial for many applications. I suspect that many

implementations would ignore the time-of-day clock entirely and

use one of the interval timers (which have microsecond resolu-

tion) . The choice of 10 msec is sufficiently close to line fre-

quency to suggest that the designers intend the time-of-day clock

to be driven off the line current. But in the United States,

* line current is 60 Hz, which gives a tick every 16.67 msec, and

in most of the rest of the world, it is 50 Hz, which works out to

a tick every 20 msec. I would suggest either following the ap-

*O proach of the IBM 360 and increment the clock either by five 60

times per second or by six 50 times per second (giving an effec-

* * tive rate, but not resolution, of 300 Hz), or have one tick each .I

millisecond.

1 1
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Given that the processor clock is not v.isible to the IOC,

two alternatives are possible. One is to put the timer support

in the communications device itself. The IOC could read the ti-

mer by executing a READ or READS command. This solution is clum-

sy and seems to be out of the spirit of the standard. (If func-

tions are to be pushed out to the device itself, what is the

point of specifying the instruction set of the IOC in such de-

tail?) The other solution is to require more of the protocol

work to be done by the main processor.

If the processor is to do any of the protocol itself, a

"scatter-gather" facility would be very helpful. That is the

ability to specify a sequence of buffers in a single I/O command.

On output, the buffers are gathered together and sent as one

packet; in input, the packet is broken into pieces and scattered

to the different buffers. This feature is usuful to obviate the

need to copy a message. The message could be presented directly

as one buffer and any protocol headers could be in other buffers.

The IOC standard provides this feature in two ways: First, the

address of the buffer in a READ or WRITE operation is specified

by a word in the message. Therefore, the message can contain the

addresses of a whole list of buffers. Second, the messages them-

selves can be chained. Unfortunately, all of these buffer ad-

dresses are virtual addresses which are mapped according to a

single segment specified by the Data Buffer Segment Specifier.

This means that all the buffers in a single I/O operation (from 7

the point of view of the main processor) must lie in a single

contiguous block of physical memory, all of which is mapped to

11-10.18



the IOC for the duration of the operation. However, the situa-

tion is not hopeless. The protocol headers could be put into the

message itself and read/written with the RTMSG and WFMSG com-

mands. This at least allows the headers and bodies to come from

different portions of physical memory. However, this scheme may

prove insufficient for multi-layered protocols. On the whole, I

think communication with the IOC through physical addresses would-

make much more sense.

Another feature that would be useful for a multicomputer,

especially one built using a broadcast medium such as Ethernet or

a token ring, would be a sophisticated message-screening facility

in the front-end. Ideally, the main processor should be able to

present the front-end with a set of commands of the following

form: If a packet arrives with such-and-such characteristics

(based on the sender and on some sort of "subject" field in the

packet) , then take the following actions (which could include re-

turning some sort of canned response, putting the packet in a

particular place depending on its header, and/or interrupting the

main processor). The "message chaning" facility of the IOC seems

to be of little use here, since all the requests must remain ac-

tive simultaneously and there is no way for the IOC to go back to

a message once it has chained to the next one. However a set of

such requests could be constructed by building an appropriate
channel program and a corresponding message. once again, though,

the restriction that the message can only point to locations in a

single segment limits the usefullness of this approach. It would

not be possible, to give a list of buffers in different user
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processes and instruct the IOC to put a packet into one of them

based on its header.

4. MISC OBSERVATIONS

Reading the standard I came upon a few errors that, while

not specifically related to the subject of this report, might be

of interest to the framers of the specification:

Most importantly, in the discussion of memory mapping (p.

42) it is not clear whether the "relocation amount" is to be in-

terpreted as a signed quantity (it almost certainly must be) and

if so, exactly how sign-extension is to be performed.

The description of the MAP command (page 136) states that

Ptr is interpreted "in the same way" as the contents of a map

pointer register. It is not clear whether this implies a physi-

cal address.

In the description of the REPENT instruction (p. 135) there

are two typographical errors: Under "Operand types", the second

line ("16-bit, 32-bit, 64-bit logical") should read "A 16-bit,

32-bit, 64-bit logical". The word "an" in the last line on the

page should be "and". It should also be more carefully specified

how A is to be extended to 64 bits (since a map entry must be 64

bits long).

On pages 37-39, all physical addresses of interrupt and trap

vectors are off by 100000 (hex).

On page 37 there is the cryptic notation "(see section

ref[iocint])", which probably should read "(see section 13.7.1)".

11-10.20
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The description of the SETSEG instruction specifies that the

"Access Code Required" for the Channel Program segment specifier

must be "Instuction". There is no such access code. The code

should be either "Execute" or "Execute/Read". It is not clear

which is intended.
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ABSTRACT

A number of problem areas with the Nebula Instruction Set Architecture

(:4L-STD-1862A) are discussed which were not covered irn other reports by

the irndeperndernt reviewers, but which Digicomp felt deserved some

emphasis. This report is based or. the version of MIL-STD-1362A issued

in late September, 1982, dated TBD.
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INTRODUCTION

This report covers miscellaneous problems and suggested changes not in

the domain of the other reports. It is organized into four sections.

The first discusses problems related to exceptions, interrupts and

traps. The second raises terminology problems and points needing clari-

ficatior.. It oftern deals with situations which are not covered i.

:IL-STD-1862A, but which can arise with legal implementations of the

standard. The third section contains comments about various portions of

the architecture which were considered problematic but for various rea-

sons were not studied in detail. The fourth section is a discussion of

the goals of the Nebula program versus its achievement of those goals. ----

TRAPS, INTERRUPTS, EXCEPTIONS

These are discussed together because they share some problems. Although

Nebula closely matches Ada's rules for exception handling, there are

several problems with exceptions in lebula.

1. Nebula does not specify (precisely) when an exception or

trap can be raised during execution of an instruction.

rhis omission might be especially troublesome in pipelin-

ing where Nebula leaves much freedom to the implementor.

An implementation might allow an instruction to raise an

exception during operand pre-evaluation while the previ-

ous instruction is still executing. It is legal in

II-1i .1 "- -
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Nebula that an exception could be discovered and raised

during pre- evaluation of operands of the next irstruc-

tior. in the ir.struction stream even though the current

ir.struction has not finished executing.

2. Truncation on integer operations completes the instruc-

tio. ar.d writes to the result before raising the trunca- "" "

tion exception. This is in.consistent with Ada, which

requires that the result operand not be changed. Ada

compilers on Nebula will therefore have to use a tempo-

rary for the result unless analysis can determine that an

overflow is impossible. Integer truncation is also

inconsistent with the rest of Nebula in two ways.

Overflows or. floating poir.t operations do not write the

result if the exception is enabled.

Or. all other exceptions in Nebula the instruction is

aborted with no side effects.

Nebula should be changed such that, if the result of

integer arithmetic instructions can not be correctly rep-

resented in the destination and the EAE bit is set, then

the truncation bit should be set, the instruction aborted

with no side effects, and the truncation exception.

raised.

3. There are three problems with the ir.structions which

raise exceptions.

11-11.2
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* Since exception codes of 0 are allowed, if the ECODE

instruction returns a value of 0 then the program will

not be able to determine whether the 6xception handler

was in the "exception-code-available" state with an

exception code 0 or the exception handler was in the

"disabled" or "handler defined" states.

, Since instructions car. raise exceptions with exception

codes of 1 through 35, the exception handlers car.not

determine if an exceptior was raised by the hardware or

the software.

* No exception codes are reserved for future use by the

hardware.

rhe latter problem is particularly easy to resolve at

this point, but may be very 'costly if resolution is

delayed until a significant quantity of software is

developed. The problem should be resolved.

4. Some instructions in Nebula are required to be interrup-

tible, for instance Block Move and Compare Block. All

instructions are potentially interruptible; whether they

are or not is implementation dependent. The operatir."

system, in handling traps and exceptions, may need to

know if the instruction has been completed, suppressed or

interrupted. If interruption is the case, the operating

* system might need to know something about the instruc-
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tior.'s suspended state to process the exception. Neither

sort of information is presently specified.

5. Under some conditior.s the supervisor exception har.dler

(SEH) will not be able to tell if it is returning to the

environment of the exce.ption or to the environment of a

direct or indirect caller of environment where the excep-

tion occurred. For example, if, on an exception, the
4

UDLE bit is cleared and the exception handler is disa-

bled, the exception will propogate up the call chair.. If

the caller has its UDLE bit set a supervisor exception

handler call will occur. The way the SEH determines

whether the exception occurred in the procedure context

which ir.voked the SEH is by comparing its second and

third parameters, If they are not the same then the

exception must have been propagated. (This assumes par-

ticular ar.swers to other questions concerning excep-

tions.) However if parameters 2 and 3 are the same one

cannot conclude that the exception occurred in the proce-

dure context that invoked the SEH. If the exception

occurred in the instruction following a recursive call of

the procedure, then parameters 2 and 3 would be equal

whether the calling procedure or the called procedure

invoked the SEH.

11-11.4
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TERMINOLOGY AND POINTS NEEDING CLARIFICATION

The standard needs to be rewritten for clarification and improved preci-

sior. of terminology and explanations. While the standard has generally

improved in these respects since the 1980 May 28 version, there are

still many situations which can arise in Nebula implementations with the

ability to affect the software but which are not mentioned in the star.-

dard. Reviewers have frequently misunderstood points in the documents

and have had to ask numerous questions for clarification. Too often,

one must be familiar with the rationale of the designers to answer ques-

tions and clarify ambiguous or incompletely specified points.

This section is meant as a partial list and summary of some if these

issues. It is not definitive and generally does not recapitulate issues

raised by other reviewers, whether or not Digicomp feels they were

addressed satisfactorily. Of course, page and section references refer

to the version of MIL-STD-1862A issued in late September, 1982, with

"date TBD".

General Points.

1. The definition of "interruptability" (page 3), "An

instruction is restartable from the point of interrup-

tion", needs some clarification. What action can cause

an instruction to be interrupted? Is it restricted to

interrupts or can it be an exception or trap? Car, an

interruptible instruction abort under some conditions
*I

instead of interrupting and resuming from the point of

interruption?
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2. When an exception occurs the presently executing instruc- -

tion can terminate, abort with side effects or abort with

no side effects.

3. "Ir.terruptable vector instructions" (page 69) is ur.de-

fined and should be replaced with "interruptible ir.struc-

tions".

4. The last line of the example or. page 14 should read

07 0 4 5 -7 0 7 0 34 7

-O E010 1 000/ \O/\L.01.1
EXTENDED PARAMETER 3 R4

rather than:

O7 0 4 5 7 0 7 0 3 4 7'"'' ,

MOV 0010 00] 3 0 010 0

EXTENDED PARAMETER R4

5. In section 11.3 or, page 40 "physical address 4" shoul.

read "physical address 100004".

6. Ir. sectior. 11.4 or. page 40 and ir. sectior. 11.5 or. page 41

where "word at physical address" is used, "vector at

physical address" is probably ir.ter.ded.

7. In paragraph 5, page 41 "in step 2 used" should read "in

step 2 is used".

8. The last paragraph of section 11.6 (page 41) states that

11-11.6
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the ability to detect h.rd memory errors is implementa-

tion dependent. However the last sentence on page 45

states that "a hard memory error is generated". It is

not clear in this case whether the processor can generate

the error but not take the trap or the processor must

trap through location 100014 (Hex).

9. In section 11.11 or. page 42 "simultaneous occurrence"

needs to be explained.

10. In Chapter 30 it states that "opcodes reserved for hard-

ware implementors shall produce implementation dependent

unpredictable results". Is the word "unpredictable"

intended? Are all or any of these opcodes used for priv-

ileged instructions? If some of the opcodes can be priv-

ileged, who makes the determination?

11. If the operand specifier for the index in the scaled or

unscaled index mode has a size of 64 bits then the

address is undefined (Sections 5.9 and 5.10, pages 16,

17). This seems to be an unnecessary implementation

dependency. An exception should be raised.

12. rhe explanation of the last mode bit of the PSW (section

6.2) should be rewritten. This bit indicates on which

context stack to resume operation when returning from a

task, i.e from a procedure context with the base bit, PSW

bit 16, set. This bit is set appropriately on procedure

11-11.7
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invocations which are task initiations, i.e. are caused .

by interrupts, traps, rINITs or PINITs; otherwise it is

not changed.

13. The second sentence of section 6.14 should begin with "In

instructions which are not floating point operations". q

The Procedure Interface.

The procedure interface is one of the fundamental components in the

design of Nebula. Documentation of the interface is generally well

written and comprehensive. However, slightly more detail is needed and

several points need clarification.

1. OPEXs and Supervisor Exception Handler calls should be S

added to the list of mechanisms that invoke procedures in"

section 4.3 (page 4).

2. Chapter 8 explains the procedure interface and all the

methods for procedure invocation. It does not, however,

explain the process of returning from a procedure in

detail. This explanation should be added.

3. In section 8.1.2 point 4, "the state of the exception

handler" should be changed to "the state and the address,

if any, of the exception handler". The procedure context

contains more than just the state of the exception han-

dler.

4. The terms "context stack", "active context stack" and

11-11.8
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"context area" r.eed to be defined. The first term is

used frequently. The latter two are used ir. section

3.1.3, which states "the representation of the context

area of the active (Kernel and Task) context stacks is

IMPLEMENTATION DEPENDENT". This phrase has beer giver.

many interpretations. A "context stack" contains a col-

lection of one or more execution contexts. However, it

is not specified what marks the boundaries of the context

stack. For example, if protection is or., is the .4nole

context stack always marked "context access only"? Also,

"active context stack" needs to be defined before one can

talk about dynamic management of the "context stack".

5. Section 8.1.5, Alignment of Context Pointers, needs clar-

ification. Must the context pointer point to an object

in the current procedure context? Are the references to

"context" in this section references to a "procedure con-

text"? The last sentence states that a context are3 may

be initialized by setting the context pointer to the

greatest word address in the context area plus 4".

Again, what is a "context area"? Is this a statement for

programmers or implementors, i.e can a programmer ini-

tialize a context area by setting the context pointer to

this value or is the value to which the context pointer

needs to be set for initialization implementation depen-

11-11.9
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dent? It would seem to be the latter. The former case L

would seem the appropriate one to define; even if the

context area is implementation dependent, there should be

an implementation independent way to initialize it.

6. It is not clear what will happen if a program has two

"context access only" segments which are contiguous in

virtual space but discontiguous in physical space. The

standard does not specify how the procedure interface

must har.Ale this situation. Thus, a program cannot be

dynamically allocated context stack space as needed.

7. It should state in the third bullet of section 8.3 that

the exception handler is put in the disabled state.

8. In section 8.3.1, under specifications for when the 3ASE

bit (PSW:16) is set, invocation of a supervisor exception

handler with a Task.Failure exception should be added.

9. In section 3.4, Parameter Lists, it states that "in cer-

tain interrupts and traps [the parameter list] is implied -
by the architecture". This is the case in most, if not

all, interrupts and traps. The term "certain" should be

deleted and any exceptions to this should be listed.

Also the supervisor exception handler should be added to

the list of procedure invocations with implied parameter

lists.

10. In fig 8.6, "double integer" should be deleted.

F.
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Exceptions

1. Figure 9.1 shows the three states of the exceptior han-

dler and some of transition paths betweer them. When it

was pointed out that this did not show all the allowed q

transitior.s, the text was changed from "the allowed tran-

sitions" to "the typical transitions". It would be much

more useful to have a diagram which showed the allowed - -

transitions. Figure 1 below is an attempt at such a dia-

gram.

2. Figure 9.2 shows the mechanism for propagation of excep-

tions. However the box labelled "START" is really the ---

start if the exception is a hardware exception or was

raised with RAISE. It would be useful if the diagrai

included exceptions raised with ERP, ERET, " TRAISE and

PRAISE. Figure 2 below has been modified to include "

these exception sources.

Points related to the IOC: \

1. In specifying the BIT bit (bit 15) of the Channel Status

Register (section 13.2.4), Nebula should specify that a

"" denotes no error detected and a "I" denotes the

detection of an error.

2. "Channel dependent" is used in Chapter 13. This term

should be defined. For instance, since channels are
sistandardized but different, it could mean that the field "
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ECODE, EXCEPT
with Operand = 0

ECODE, EXCEPT
with Operand = 0

Disabled

ECODE Instruction / EXCEPT Instruction \.

EXCEPT Ewith
ith Operande O and e 0rn 0

o AEXCEPT Instruction

=" Cde Availabl < Defined
CC Hardware Exception ""-°

-- or RAISE Instruction

with UDLE = 0

Figure 1: Allowed State Transitions During Exceptions

means one thing for all 1553B channels but possibly some-

thing else for SPP channels. This seem to be the meaning

when it is used in paragraphs 1 and 2 of section 13.8.1.

It is not necessarily the meaning one would assume in its

use in describing the Channel Configuration Register and

I-11 12

. .. . . .•.,

? "2, 'i.-



- ... ~TV. - .. - -.... ..... .... .......-

Start for RAISE and Start for Start for

Hardware Exceptions TRAISE PRAISE

Pop Top Context from
Current Context Stack %

Resume execution of
Topmost Procedure on--"."

Specified Context StaC

Call Supervisor
1 Exception Handler.

TASKD ALURE Handler Placed
in ECA State*

Restore Restore ...
Caller's Caller's 0-'-
Context Context i le e ] [ [ i,..

PC 4- Handler Address. r. I

Remove Remove I. Hande Ye Handler Placed in".'

Current Current Defined? Exceptoixon Code
'

Context Context Available State ...... •

Start for h  } Start for --

ERP ERET [--.-'

. . . . . . . . . . . . . . . . . . . ...--.. . . .
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Figure 2: Propagation of Exceptions END
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Channel Status Register. The former definition would

significantly aid portability of channel programs.

3. Section 13.8.4.2 mentions the input and output channels

of the SPP. These should read "channel program" rather

than "channel".

4. The term "implementation reserved" used in describing the

IOC register blocks on pages 67 and 68 (section 13.9)

should either be defined or changed to a defined term.

5. If relocation and protection are off, how does the SETSEG

instruction work?

Points related to the instructions

1. in the instruction descriptions (chapters 17-29) one

field of the description lists the exceptions and traps

that can occur in executing the instruction. Not all

possible exceptions and traps are listed since many are

not instruction specific, i.e., either they can occur in

all (or most) instructions or they can occur in none. It

would be helpful to list the subset of the exceptions and

traps that are never mentioned in the program exceptions

section of the instruction description. An alternative0
would be to list the subset in the explanation of the

instructions descriptions in Chapter 16.

2. Operands are specified by either operand specifiers, in-

1 1
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line literals or displacements. Displacements should be L..

listed as a type in section 16.2 and discussed in a sub-

section. Also the first sentences of sections 4.2 and '

mention neither in-line literals nor displacements in

describing instruction formats.

3. There is an inconsistency in the setting of the N bit in

the subtract and compare instructions. A SUB #3,#4,%4

instruction will clear the N bit, while a CAP #3,#4 will

set this bit. This is also true of the SUBU and C.?J

instructions. Nebula should be changed so that the N bit

in CMP (& C1'PU) is set when "B lss(u) A" rather then when

"A lss(u) B".

4. It is not clear exactly what is allowed in implementi -g

the Compare and Swap instruction (CMPS). CPMS is an

interlocked instruction which requires write access to

its second operand if the values of the second and third

operands are equal and to its third operand if they are

not equal. Is it legal to require read-write access for

either the second or third operand before starting the

instruction and initializing the interlock on the second

operand. Depending on how this is handled there are cir-

cumstances where a memory management trap will or will

not occur during execution of the instruction. Only one

of these interpretations should be allowed.

5. In the CALL, CALLU and SVC instruction descriptions, the

II-1I. 15
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operand type for the parameters, PI,...,Pn, is listed as

"all types of operands allowed in parameter list". The

standard should either list the types allowed or explain

this phrase in the description section.

6. In the LTASK instruction the second word in the two-word

block contains the physical address of the map. It

should contain the status bits of the map pointer regis-

ter as well, i.e. this word should have the same format

as a map pointer register.

7. A specification.error exception can be raised by the load

task instruction (LTASK) (See section 12.2.1). LTASK --

should list this exception under its program exceptions

section and describe the condition which causes it to

occur.

8. The action of REPENT under exceptional conditions is not

clear. What happens if the segment number is larger than

the current map size or if it is larger than the maximum

map size for that implementation?

9. The use of the Z bit in 'AP and SETSEG is somewhat incon-

sistent. In AP, the Z bit is cleared to indicate an

improper virtual address. In SETSEG, the Z bit is set to

indicate an improper virtual address. MAP should invert

its use of the Z bit to remove this minor but needless

inconsistency.

10. The operation of the Wait for Interrupt instruction

11-11.16
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(WAIT) is unclear. The description states: "The

processor shall enter a wait state until any interrupt is

posted, at which point it shall respond normally."

"Posted" needs to be defined. If it means "accepted"

then the processor will remain in a wait state until a

interrupt of higher priority than the current task

occurs. This interrupt will be processed and then the

instruction following the wait will be executed. If

"posted" means "pending" then the processor will co-m-

plete the wait instruction and execute the next instruc-

tion as soon as any device is trying to interrupt the

processor. The processor will not know, however, whether

or not it has processed an interrupt between the start of

the WAIT and the execution of the instruction following

the WAIT.

GENERAL COMMENTS ON NEBULA

This section contains some general comments on Nebula. The issues men-

tioned are not necessarily problems with the architecture, but bear mer.-

tioning.

Memory Management System

The memory mar.agement system is probably the area of Nebula that is most

often misunderstood and, aside from the procedure interface, been the

most commented on. It is also unclear what the requirements are for ,..

1I-11.17
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this area; thus making analysis of its suitability difficult. The fol-

lowing are general comments or. it:

1. The Memory Management System does not support "demand

paging", that is, if an instruction causes a memory man-

agement trap because it referenced non-resident data,

then the trap handler is not able to fetch the missing

information from secondary storage and transparently

resume execution at the poir.t of the trap. Demand paging

is made difficult by several parts of the ISA and is

ruled out in the introduction to Chapter 26 which forbids

alteration of the source or destination region of a

string instruction after the instructior processing has

begun.

2. On a memory management trap, the ISA restricts what the

trap handler car, do. Assuming the program counter is

pointing to the instruction causing the trap, then it is

hard to skip an instruction; if the program counter is

pointing to the next instruction then it is hard to exe-

cute the instruction which caused the trap; finally if

what the program counter points to is implementation

dependent, then the trap handler does not know what will

happen if it executes a RETurn to the task causing the

trap.

3. The map entries describing a segment are interdependent.
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The segment is described by two entries, one providing

the upper bound and the other providing the lower bound.

The upper bound of a segment is the lower bound of the

following segment. This design implies that it is

believed that usually the virtual address space of a pro-

gram will be contiguous. In places where the virtual

address space is noncontiguous, a map entry must be used

to mark the nonused space. Since there are a limited

number of segments, to avoid wasting them to mark unused

virtual addresses, the program must use contiguous vir-

tual addresses. If it is necessary for a program to. as -. -

a rule, use noncontiguous segments, then that program

will only have half the actual map entries available for

segments.

4. Aliasing of physical adresses (having distinct virtual

addresses map to the same physical address) leads to

unpredictable behavior (Section 12.3.2). This means that -

the supervisor and a user cannot both have access (per-

haps with different access rights) to the same code.

5. If address relocation is needed in a program, then pro-

tection is required to be used.

6. SETSEG must use one of the active maps. If I/O is being

done into a user space, then requiring that user's map to

be active may be inefficient. If there is an active I -
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queue of programs awaiting access to the controller, then

the new program being granted access to the IOC will not

be executing. Thus to start the I/O the present user's

map will have to be swapped out so that the required map

car. be loaded anda SETSEG executed. This map will then

have to be swapped out and the original reloaded.

Comments on Procedure Interface

There has beer. considerable comment or and problems raised with the pro-

cedure interface in the various reports. This section mentions some

points not raised before.

1. All registers used by a procedure are saved when that

procedure executes a call-type instruction. Other than

Register 1, no registers are inherited. This may be

somewhat space inefficient since unnecessary registers

will be saved in memory. Lack of register inheritance

also interfers with passing information between proce-

dures; system state information (e.g. a pointer to the

activation record of a lexical parent) must be passed

either through parameters or memory. To be used, how-

ever, this pointer will probably have to be loaded back

into a register since the architecture has no useful pro-

11112
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visions for indirect addressing through memory.1

2. The er.try address of a procedure is required to be or. a

double word boundary. If the operand of the call

ir.struction is not double word alligned, then the two low g

order bits are forced to zero, no exception is raised,

and the procedure call is made.

3. Immediately after a procedure call, the registers are

undefined. Because of security and portability consider-

atior.s, the registers should be either defined as a spe-

cific value or else register reads should not be permit-

ted unless the register has been written, i.e. an

ur.initialized register exception or trap should occur if

illegal register reads are attempted.2

4. Nebula's treatment of the PSW is somewhat unusual.

1 There is a way to address indirect through memory but it is a very

long operand specifier (typically 7-11 bytes) and will probably not be S
used in favor of a two instruction sequence which will be two bytes
shorter and perhaps faster.

Using special implementation techniques, the time inefficiencies of
saving and restoring the registers can be greatly reduced. However,
with typical treatment by the implementors, saving ar.d restoring the

registers would be time inefficent; therefore, a different implementa-
tion strategy for registers is indicated by the ISA. The strategy may
prove to be a burden on microprocessor or low end implementations of
the ISA, with the result that ir. these implementations the register

treatment may be more inefficient than the more standard register
architecture in other ISA's. The efficiency of the register architec-

ture is very related to implementatior strategies; however, a poten-
tial problem does exist.

2 This was agreed to be a problem at a Tiger Team meeting, but appar-
ently the standard was not modified to correct it.
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* The PSW of the executing procedure is not directly

accessible. The only allowed method to read or write

the entire PSW is to use the LPSW and SPSW ir.struc-

tiors. These instructions load and store the PSW of

the calling procedure.

* There is no way to read the PSW of the top procedure

context of the inactive stack (actually of the top pro-

cedure context of any execution context). Thus the

memory management trap handler car.not read the PS4 of

the procedure which caused the trap.

* The unprivileged user has very limited access to any

fields of the PSW.3 The only direct way to read or

write these fields is using the Set Condition Codes

(SETCC) instruction which allows the user to set or

reset five bits (EAE,C,T,N,Z) of the PSW. It does not

allow the user to set some bits and leave others

unchanged. It will typically be difficult for an

unpriviledged user to read these bits.

5. When allocating a procedure context during procedure

invocation, space must be provided on the context stack

for temporary storage of the state of interrupted

instructions. Otherwise, a context stack overflow and

hence a memory management trap could itself occur when

3 The LPSW and SPSW instructions mentioned above are privileged instruc-
tions.
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processing an interrupt or trap, and there would be no

room in the stack for processing this second trap.

.6. When a new procedure context is added to the current con-

text stack, the space for saving state in the previously

current procedure context should not be retained unless

the space is being used. This will only happen if the

new procedure context is being allocated as a result of

interrupting ar. instruction. As a consequence, when

returning from a procedure context, the inplemer.tatior.

needs a method of knowing whether the procedure context

being returned to is one with state save space. The

problem is especially complex for call instruction (CALL,

CALLIJ, SVC). These should be interruptable since they

may have many parameters and therefore take too long to

ensure adequate interrupt response. (Aborting calls

rather than interrupting is probably undesirable.) How-

ever, the save area for the procedure context of the

calling instruction must be retained until the call

instruction is completed, and then and only then it

should disappear. "

6 W7
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GOALS VERSUS ACHIEVEMENTS

Introduction

In analysing Nebula one should look at the relevant goals, uses, and

environments. Other reports have been primarily concerned with types of 6
uses of implementations of the ISA. In this chapter, both the relation-

ship between goals and environments, and the achievement of the goals

are examined. The first section discusses the relevant differences

between the environment and goals of the Army and Air Force and the

effect of these differences on evaluation of 'Jebula. The second section

discusses the goals of Nebula and the Air Force High Level System Stan-

dardization program and the extent to which these goals have been S

attained. The final section discusses the general program development

and test limitations due to lack of complete specification of the hard-

ware operations in the Nebula standard.

Army vs. Air Force Goals and Criteria

The differences between the point of view of the Army and that of the

Air Force can lead to significantly different technical evaluations of

the architecture's suitability. An obvious corollary to the theory of

standardization is that standardization should be across all three ser-

vices. Although there are cases where it has been successfully argued

that a standard of one service is not appropriate for another, it should

be quite possible to design an ISA that would be appropriate for both

the Army and the Air Force. Inter-service differences are not based so

much on differences in the embedded application as they are on differ- -
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ences of situation or environment. These differences and some implica-

tions of them on the Nebula effort are discussed below.

Multiple vs. Single vendors: The Army plans to purchase implementations

of production versions of the ISA from a single vendor over a set order-

ing period. These ordering periods are intended to be a maximum of 5

years, with the first being 5 years. The Army will then supply the com-

puters as GFE for systems needing embedded computer capabilities.

Essentially, by using a single vendor the Army has temporarily avoided

the problems of portability due to lack of clarity or completeness in

the Nebula standard (this assumes a contractor will make the mini- and

micro-computer versions of Nebula such that programs are portable

between them). Tne Air Force will have to adopt a different policy

toward the Nebula standard if they are going to allow acquisition of

ISA-validated embedded computers from any vendor. To insure portabil-

ity, the Air Force will have to deal with the implementation dependen-

cies, and to eliminate areas where the standard is incomplete.4 In gen-

eral, the Air Force can be expected to have to face numerous portability

problems.

However, the Army's acquisition policy is only a short term solution-

to the problems induced by the current standard. In order to handle

portability problems that will arise during the first technology inser-

tion stage, the Army will have to address the fact that the "standard"

4 These changes to the standard would have to be handled like the Army's
specification in the MCF Advanced Development contract for the Initial
Program Load sequence.
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is largely defined by the implementation they have purchased. That

"standard" includes much more than is defined by ;4IL-STD-1862A. If the

micro-computer and mini-computer versions are not compatible, then the

Army will immediately be faced with portability problems. Given the - 'p

freedom in pipelining and caching that the Nebula specification pro- -

vides, this incompatibility is likely. Further development or refine-

ment of future ISA's will have to take into account the portability of

programs that were written for the "real" standard even though it may be

difficult to document. Also, based on current schedules, work is to

start on the future implementations before there is significant field

experience with using Nebula in deployed systems.

Mainframes: The Army has expressed disinterest while the Air Force has

expressed mild interest in mainframe (or large general-purpose mini-com-

puter) implementations of the ISA. While this may not turn out to be an

Air Force need, it should be addressed. The suitability of Nebula for

implementation on a mainframe was not specifically studied. However,

MIL-STD-1862A is very likely to prove inadequate for this. Certainly,

the memory management system of a mainframe computer has to allow for

many more than 16 segments. A workable scheme to allow paging (with

appropriate additions to the architecture like reference bits) is also a

necessity. Further, the importance of virtualizability of the ISA would

likely increase. .. -. '-
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Continuous vs. Discrete Technology Insertion: The Air Force, through

competition between suppliers, has the opportunity to have continuous

technology insertion. The Army plans a technology insertion point at

approximately five year intervals.

The Air Force is in a position to take advantage of major improve-

merts in implementation technology (how the hardware is built). By hav-

ing continuous technology insertion, the Air Force will likely have a

much better implementation in the field during the period of time that

the Army's next version of the !1ebula computer is being developed anJ

readied for production. However, since the Air Force must take care not

to severely impact the larger number of suppliers and contractors that -.-.

are building lebula computers, they may only make minor changes to the

lebula standard. This restriction means the Air Force must be very con-

fident that the adopted Nebula standard meets their requirements prior

to asking industry to make the effort to produce implementations.

Box vs. ISA Standardization: The Army is standardizing on the box level

as well as the ISA level; the Air Force is only standardizing on the ISA

level. The Army plans to purchase standard implementations of Nebula

with fixed peripheral interfaces, main memory, and processor power.

Thus, the Air Force needs more flexibility in the I/O architectur3 -- in

particular: the types of interfaces that the IOCs will support, the

ease of extending the IOC instruction set to support new interfaces, the

number of IOCs that can be attached, the support for directly connected

devices. The Air Force may have more interest than the Army in other
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areas - for instance: tightly coupled multiprocessing, and putting --

some provisions for fault-tolerance at the ISA level rather than rele-

gating it to the box level.

Support for other HOL's: The Air Force has a requirement to support

applications written in JOVIAL J73 (its current language standard) and

to support Al applications requiring an undetermined HOL. Difficulties

in efficiently supporting these languages, as brought out in the reports

of the reviewers, could increase the Air Force's life-cycle costs of

adopting Nebula as a standard -- either through program inefficiencies

or by increasing the number of waviers requested to not use - 6

MIL-STD-1362A for many applications. Since the Army does not have a

similar investment in applications written in standard languages or

apparent concern for the demands of AI applications, there is less con-

cern in the 14CF program about the use of non-Ada languages (like JOVIAL)

on Nebula computers.

The MCF Program Schedule: Since the time that the MCF program started

in 1975 with little funding and a very limited staff, it has increased

enormously in size and support. The increased emphasis within DoD for

standardization of computer systems combined with the Army's lack of any

other program for standardizing on a computer architecture has undoub-

tedly served as much of the driving force. With the failure to acquire

a commerical architecture and the development of the Ada standard, the ., .*-

strategy of the program changed to developing a new architecture which
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would run Ada efficiently. Although such a strategy would put a result-

irng computer in a good position in the time period after Ada becomes

available, the requirement to have a standard architecture quickly means

that the Nebula standard had to be finalized before Ada was finalized.

The design process covered a period from September, 1979, to lay,

1980 when the first version of MIL-STD-1862 was available for review by

the EIA. This span of time is exceedingly short to produce a complete

specification of a new computer architecture. In the rushed schedule,

the design~ers were eviderntly forced to ign~ore mnry aspects of support

for programming languages (Ada in particular), and for support of "side

issues" like fault tolerance, virtualiziblity, multiprocessing, etc.5

The reviews that were requested were rather rushed and thus not very

comprehernsive. Typically, the results of the reviews were used for

"fine tuning" and, except for the 1/0 area, were largely ignored if they .

pointed up areas needing massive changes to the architecture. This

report appears to be the most comprehensive review of Nebula, but there

are certainly more areas which require investigation and many problems

to resolve before Nebula can be considered a mature standard.

The Air Force does not require that Nebula be completed on a rushed

schedule - it has the 1750 standard and no perceived urgent rneed for a

32-bit ISA. The Air Force can move into a new architecture at a more

reasonable pace -- adjusting to the Ada schedule as necessary, consider-

ing uses, going through an adequate review process, and ensuring the

5 The version of the specification published in July, 1981, finally
removed most of the significant errors from the section dealing with
the I/0 interfaces.
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architecture meets its requirements. However, to follow such a plan

would apparently require the Air Force to discontinue efforts with

Nebula and drop the attractive possibility of a'shared standard.

Nebula Achievement of ISA and AFSC-HLSS goals

Instruction Set Architecture Goals: The ISA standardization effort has

generated a number of goals. These goals are that MIL-STD-1862A should

be:

Implementable on a family of machines with a wide range of

processing power

* An efficient host for implementing iICF HOL's (e. g. Ada)

An efficient base for implementing ICF communications harn-

ware protocols (e. g. 1553B, RS-232)

* A good target for implementation of a wide range of applica-

tions (e. g. real-time systems, data base systems, CCCI

applications).

* Reduce the visibility of the hardware to the software.6

An ISA standard that is to be evaluated against these goals must be com-

plete, or its suitability for certain applications will be based on an

impression rather than knowledge of how a machine conforming to the ISA

actually operates. Points raised earlier in this and many of the other

6 Szewerenko, L., Dietz, W., Ward, F., "Nebula, A New Architecture and
its Relationship to Computer Hardware," Computer, Vol. 14, No. 2, Feb-
ruary, 1981.
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reviews indicate that the Nebula designers did not have the time to

fully address the extent to which a hardware operation becomes visible

when the software must handle exceptional conditions. This issue of

completeness of the standard is discussed below from a viewpoint not

mentioned by the other reviewers.

AFSC - HLSS Program Goals: The Air Force System Command (AFSC) has a

High Level System Standardization (HLSS) Program to expand the standard-

ization of computer resources across Command programs. The goal of this

program is to implement the efficient execution of Ada and very high

level programming languages in a standard way by 1990. The expected .

benefits of this program are:

* Reduced life cycle software costs.

* Reduced logistics and training support. %

* Both application and support computer programs may be used

on multiple projects.

* Use of standard ISA's to facilitate hardware competition.

Increased portability of computer programs.

The last goal, that of program portability, plays a central role in many

of the other goals. In particular, life cycle costs and use of computer

programs on multiple projects are tied very closely to program portabil-

ity. To a certain extent, logistics and training support are also
- ...-.

affected by portability. Again, one of the major problems raised by the
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review on the portability of programs written for Nebula7 was the lack .-. I

of completeness found in the Nebula standard.

Completenes of the Nebula Standard: The requirement for completeness

is essential for making the standard work. The notion of completeness

being used by the designers differs from the goals stated at the begin- '

ning of HIL-STD-1862A. Section 1.2 of the standard states that the pur-

pose of the document is to define the Nebula Architecture "with suffi-

cient precision to permit independent implementations of this

architecture that execute identical programs in the identical manner."8

This might be read to imply that all programs must execute identically

on independent implementations. It is clear from the content of the

documer.t and discussions with the Nebula designers that this implication

is not the intent of the document. The completeness goals of the

designers are apparently that: assumptions the programmer is allowed to [* .

make about the machine are completely specified. It is not the case

that all the behavior the programmer may observe of the machine is com-

pletely specified, only that there exist programs which can be written g

which will execute identically or. independent implementations.

The advantages of this approach are twofold. First, the specifica-

tior may be made simpler and shorter. It has a better chance of being

understandable and not loaded with burdensome detail. Secondly, it .

increases the variety of hardware technologies and performance require-

7 Worona, S., Writing Portable Programs for the Nebula ISA, this report.

8 MILITARY STANDARD. Nebula Instruction Set Architecture, MIL-STD-1862A,

Date TBD, pg. 1.
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ments that implementors may provide. Fewer restrictions are placed

or the the implementors and chances of eliminating desirable implementa-

tions are r'educed.

However, this approach to completeness does have drawbacks. To write

programs that are portable across Nebula family members, the burden is

on the programmer not to use any information not. in the specification.

With a complex specification this burden grows greater. Programmers are

prone to make assumptions based on readily attainable information about

the observable behavior of their machine, assumptions that are not part

of the specifications. The programmer writing portable Nebula code must

have an intimate knowlege of the MIL-STD-1862A; intimate knowlege of a

particular Nebula implementation is actually undesirable. Another draw-

back of the approach is that debugging and testing code is not an accep-

table way to gain confidence in the reliability of that code across dif-

ferent. Nebula family members - this is true whether the family members

differ by originating from different suppliers, differ by using differ-

ent technology, or by resulting from technology insertion on an older

family member. Despite the drawbacks of this approach it appears to be

the approach taken by the Nebula designers. It was apparently felt that

achieving the goals of a wide variety of hardware implementations out-

weigh the added burden on achieving machine code portability.

The above goals have some strong implications for MIL-STD-1862A as a

specification. MIL-STD-1862A forms the most constant interface between

the hardware implementors and those writing machine level software. If
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the specification is unclear oriincomplete in describing to either party

the required behavior of the machine, the goals of the standardization -7-]

programs will be thwarted. In an environment with multiple suppliers J
independently designing machines conforming to the current version of

MIL-STD-1862A, it is unlikely that Nebula software could be easily

transported from one machine to the other.9 A specification that is open

to inconsistent interpretations forces one to choose between the goals

of software transportability, and those of multiple suppliers or mean-

ingful competition between suppliers.

SUMMARY

this paper has been a collection of issues that arose in evaluating the

architecture, but did not fall under any of the other reports dor.e or

was not included in them for various reasons. Many are, in a sense,

minor issues or issues with obvious solutions. However, they are issues

that need to be addressed. This was not meant to be a definitive list

of such problems. As the other reports indicate the need for several -

changes to Nebula, this report indicates Nebula'S need for further

review.

9 t should be noted that testing code on all existing members of the

Nebula family is not a solution to the problem of machine code trans-
portability across family members. The forseen Air Force environment
allows multiple suppliers and competition over the life-cycle of the
system. Also, technology insertion will be likely to change the
behavior of Nebula implementations - thus new family members will be
always coming along for which confidence in software gained from test- . .

ing is not transferable.

11-11.34

4f'"::.



-7 7

MISSION
Of

0 Rome Air Development Center
* . 1ADC ptana and executeA %e6eauh, devetopment, -teUt and

6etec.ted acqui6Ltion p4oguwm in 46Ltppo)Lt o6 Command, Cont/wL iCommncation6 and Inztetgence (C31) a*ctivitia. Technicoland enginee'vng Auppot within eAez oj tec.hnicat competenceZ6p'wvided -to ESV P,%ogAkam 0jZeea (P0.61 and o-theL EST)
etement&. The p~L vwZpat .technicat mi44ion altea, akiecommuncaton6, e tctomagnetic guidaznce and contiwt, 6u&-
veit-ance o6 g,%owid and ae~o6pace object6, intettigence datacoflection and hand~ng, indo'vmation 6y6tem teehnoeogy,
iono~phev.c pkopagation, 46otid 6tate 4cienceh6, mictottauephy~ic4 and etecfi~onZe 'LetabZL~ty, maintainabitity andcomnpatibitity.I

0



FILMED

0 4-85

DTIC
0C t


